Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 206: 116722, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39033599

RESUMO

This study developed an automatic monitoring system for Floating Marine Debris (FMD) aimed at reducing the labor-intensiveness of traditional visual surveys. It involved creating a comprehensive FMD database using 55.6 h of video footage and numerous annotated images, which facilitated the training of a deep learning model based on the YOLOv8 architecture. Additionally, the study implemented the BoT-SORT algorithm for FMD tracking, significantly enhancing detection accuracy by effectively filtering out disturbances such as sea waves and seabirds, based on the movement patterns observed in FMD trajectories. Tested across 16 voyages in various marine environments, the system demonstrated high accuracy in recognizing different types of FMD, achieving a mean Average Precision (mAP@0.5) of 0.97. In terms of detecting FMD from video footage, the system reached an F1 score of 83.63 %. It showed potential as a viable substitute for manual methods for FMD larger than 20 cm.


Assuntos
Monitoramento Ambiental , Navios , Monitoramento Ambiental/métodos , Resíduos , Gravação em Vídeo , Algoritmos
2.
Database (Oxford) ; 20242024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38776380

RESUMO

Natural products play a pivotal role in drug discovery, and the richness of natural products, albeit significantly influenced by various environmental factors, is predominantly determined by intrinsic genetics of a series of enzymatic reactions and produced as secondary metabolites of organisms. Heretofore, few natural product-related databases take the chemical content into consideration as a prominent property. To gain unique insights into the quantitative diversity of natural products, we have developed the first TerPenoids database embedded with Content information (TPCN) with features such as compound browsing, structural search, scaffold analysis, similarity analysis and data download. This database can be accessed through a web-based computational toolkit available at http://www.tpcn.pro/. By conducting meticulous manual searches and analyzing over 10 000 reference papers, the TPCN database has successfully integrated 6383 terpenoids obtained from 1254 distinct plant species. The database encompasses exhaustive details including isolation parts, comprehensive molecule structures, chemical abstracts service registry number (CAS number) and 7508 content descriptions. The TPCN database accentuates both the qualitative and quantitative dimensions as invaluable phenotypic characteristics of natural products that have undergone genetic evolution. By acting as an indispensable criterion, the TPCN database facilitates the discovery of drug alternatives with high content and the selection of high-yield medicinal plant species or phylogenetic alternatives, thereby fostering sustainable, cost-effective and environmentally friendly drug discovery in pharmaceutical farming. Database URL: http://www.tpcn.pro/.


Assuntos
Terpenos , Terpenos/metabolismo , Terpenos/química , Bases de Dados de Compostos Químicos , Bases de Dados Factuais
3.
Nat Prod Rep ; 40(9): 1464-1478, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37070562

RESUMO

Covering: up to 202216.19% of reported natural products (NPs) in the Dictionary of Natural Products (DNP) are glycosides. As one of the most important NPs' structural modifications, glycosylation can change the NPs' polarity, making the aglycones more amphipathic. However, until now, little is known about the general distribution profile of the natural glycosides in different biological sources or structural types. The reason, structural or species preferences of the natural glycosylation remain unclear. In this highlight, chemoinformatic methods were employed to analyze the natural glycosides from DNP, the most comprehensively annotated NP database. We found that the glycosylation ratios of NPs from plants, bacteria, animals and fungi decrease successively, which are 24.99%, 20.84%, 8.40% and 4.48%, respectively. Echinoderm-derived NPs (56.11%) are the most frequently glycosylated, while those produced by molluscs (1.55%), vertebrates (2.19%) and Rhodophyta (3.00%) are the opposite. Among the diverse structural types, a large proportion of steroids (45.19%), tannins (44.78%) and flavonoids (39.21%) are glycosides, yet aminoacids and peptides (5.16%), alkaloids (5.66%) are comparatively less glycosylated. Even within the same biological source or structural type, their glycosylation rates fluctuate drastically between sub- or cross-categories. The substitute patterns of flavonoid and terpenoid glycosides and the most frequently glycosylated scaffolds were identified. NPs with different glycosylation levels occupy different chemical spaces of physicochemical property and scaffold. These findings could help us to interpret the preference of NPs' glycosylation and investigate how NP glycosylation could aid NP-based drug discovery.


Assuntos
Produtos Biológicos , Glicosídeos , Animais , Glicosídeos/química , Quimioinformática , Flavonoides/química , Plantas , Extratos Vegetais , Produtos Biológicos/química
4.
Yi Chuan ; 32(12): 1232-40, 2010 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-21513148

RESUMO

The expression of imprinted genes is regulated by epigenetic mechanism. In plant endosperm, the allele of imprinted genes is expressed in a pattern of parent-of-origin-dependent. The expression of imprinted genes plays essential roles in the development of embryos and their annexe structures, as well as seed size, reproductive barriers and apomixis. Along with the progress of plant epigenetic research, the exploration of imprinted genes is becoming hotspot in epigenetic research. This review focused on the parental conflict theory about the origin of imprinted genes, and the latest research advances in expression regulation mechanism of plant imprinted genes, using the examples of the important imprinted genes MEA, FIS2, FWA, MPC, and PHE1 in Arabidopsis, and FIEI and FIE2 in maize.


Assuntos
Genes de Plantas/genética , Impressão Genômica/genética , Plantas/genética , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA