Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 308: 122539, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38552366

RESUMO

Catechol-based biomaterials demonstrate biocompatibility, making them suitable for a wide range of therapeutic applications when integrated into various molecular frameworks. However, the development of orally available catechol-based biomaterials has been hindered by significant pH variations and complex interactions in the gastrointestinal (GI) tract. In this study, we introduce a novel catechol-modified bile acid (CMBA), which is synthesized by anchoring the FDA-approved drug, ursodeoxycholic acid to the neurotransmitter dopamine. This modification could form a new apical sodium-dependent bile acid transporter (ASBT) inhibitor (ASBTi) due to the bile acid moiety. The computational analysis using the TRAnsient Pockets in Proteins (TRAPP) module, coupled with MD simulations, revealed that CMBA exhibits a strong binding affinity at residues 51-55 of ASBT with a low inhibitory constant (Ki) value. Notably, in slightly alkaline biological conditions, CMBA molecules self-assemble into carrier-free nanoparticles with an average size of 240.2 ± 44.2 nm, while maintaining their ability to bind with ASBT. When administered orally, CMBA accumulates in the ileum and liver over 24 h, exhibiting significant therapeutic effects on bile acid (BA) metabolism in a high-fat diet (HFD)-fed mouse model. This study underscores the therapeutic potential of the newly developed catechol-based, pH-responsive ASBT-inhibiting nanoparticles presenting a promising avenue for advancing therapy.


Assuntos
Ácidos e Sais Biliares , Catecóis , Nanopartículas , Transportadores de Ânions Orgânicos Dependentes de Sódio , Animais , Catecóis/química , Catecóis/metabolismo , Concentração de Íons de Hidrogênio , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/química , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Nanopartículas/química , Camundongos , Humanos , Simportadores/metabolismo , Masculino , Camundongos Endogâmicos C57BL
2.
Biomater Res ; 27(1): 83, 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660070

RESUMO

BACKGROUND: Despite the effectiveness of glucagon-like peptide-1 agonist (GLP-1A) in the treatment of diabetes, its large molecular weight and high hydrophilicity result in poor cellular permeability, thus limiting its oral bioavailability. To address this, we developed a chimeric GLP-1A that targets transporter-mediated endocytosis to enhance cellular permeability to GLP-1A by utilizing the transporters available in the intestine, particularly the apical sodium-dependent bile acid transporter (ASBT). METHODS: In silico molecular docking and molecular dynamics simulations were used to investigate the binding interactions of mono-, bis-, and tetra-deoxycholic acid (DOCA) (monoDOCA, bisDOCA, and tetraDOCA) with ASBT. After synthesizing the chimeric GLP-1A-conjugated oligomeric DOCAs (mD-G1A, bD-G1A, and tD-G1A) using a maleimide reaction, in vitro cellular permeability and insulinotropic effects were assessed. Furthermore, in vivo oral absorption in rats and hypoglycemic effect on diabetic db/db mice model were evaluated. RESULTS: In silico results showed that tetraDOCA had the lowest interaction energy, indicating high binding affinity to ASBT. Insulinotropic effects of GLP-1A-conjugated oligomeric DOCAs were not different from those of GLP-1A-Cys or exenatide. Moreover, bD-G1A and tD-G1A exhibited improved in vitro Caco-2 cellular permeability and showed higher in vivo bioavailability (7.58% and 8.63%) after oral administration. Regarding hypoglycemic effects on db/db mice, tD-G1A (50 µg/kg) lowered the glucose level more than bD-G1A (50 µg/kg) compared with the control (35.5% vs. 26.4%). CONCLUSION: GLP-1A was conjugated with oligomeric DOCAs, and the resulting chimeric compound showed the potential not only for glucagon-like peptide-1 receptor agonist activity but also for oral delivery. These findings suggest that oligomeric DOCAs can be used as effective carriers for oral delivery of GLP-1A, offering a promising solution for enhancing its oral bioavailability and improving diabetes treatment.

3.
Nanoscale ; 15(21): 9315-9328, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37158478

RESUMO

Amyloid generation plays essential roles in various human diseases, biological functions, and nanotechnology. However, developing efficient chemical and biological candidates for regulating amyloid fibrillation remains difficult because information on the molecular actions of modulators is insufficient. Thus, studies are needed to understand how the intermolecular physicochemical properties of the synthesised molecules and amyloid precursors influence amyloidogenesis. In this study, we synthesised a novel amphiphilic sub-nanosized material, arginine-arginine (RR)-bile acid (BA), by conjugating positively charged RR to hydrophobic BA. The effects of RR-BA on amyloid formation were investigated on α-synuclein (αSN) in Parkinson's disease and on K18 and amyloid-ß (1-42) (Aß42) in Alzheimer's disease. RR-BA showed no appreciable effect on the kinetics of K18 and Aß42 amyloid fibrillation because of their weak and non-specific interactions. However, RR-BA specifically bound to αSN with moderate binding affinity through electrostatic interactions between the positively charged RR and the negatively charged cluster in the C-terminus of αSN. In addition, hydrophobic BA in the αSN-RR-BA complex transiently condensed αSN for primary nucleation, thereby accelerating αSN amyloid fibrillation. We propose an electrostatic binding and hydrophobic condensation model of RR-BA-driven amyloid formation of αSN, which will contribute to the rational design and development of molecules for controlling amyloid aggregation in diverse fields.


Assuntos
Doença de Alzheimer , Doença de Parkinson , Humanos , alfa-Sinucleína/química , Doença de Parkinson/metabolismo , Amiloide/química , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides
4.
Carbohydr Polym ; 314: 120930, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37173028

RESUMO

Heparin is a glycosaminoglycans (GAGs) member and well-known FDA-approved anticoagulant that has been widely used in the clinic for 100 years. It has also been evaluated in various fields for further clinical applications, such as in anti-cancer or anti-inflammatory therapy beyond its anticoagulant effect. Here, we sought to utilize heparin molecules as drug carriers by directly conjugating the anticancer drug doxorubicin to the carboxyl group of unfractionated heparin. Given the molecular action of doxorubicin in intercalating DNA, it is expected to be less effective when structurally combined with other molecules. However, by utilizing doxorubicin molecules to produce reactive oxygen species (ROS), we found that the heparin-doxorubicin conjugates have significant cytotoxic ability to kill CT26 tumor cells with low anticoagulant activity. Several doxorubicin molecules were bound to heparin to provide sufficient cytotoxic capability and self-assembly ability due to their amphiphilic properties. The self-assembled formation of these nanoparticles was demonstrated through DLS, SEM and TEM. The cytotoxic ROS-generating doxorubicin-conjugated heparins could inhibit tumor growth and metastasis in CT26-bearing Balb/c animal models. Our results demonstrate that this cytotoxic doxorubicin-based heparin conjugate can significantly inhibit tumor growth and metastasis, thus showing promise as a potential new anti-cancer therapeutic.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Animais , Heparina/farmacologia , Espécies Reativas de Oxigênio , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Anticoagulantes/farmacologia , Anticoagulantes/uso terapêutico
5.
Pharmaceutics ; 15(4)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37111617

RESUMO

Numerous cathepsin B inhibitors have been developed and are under investigation as potential cancer treatments. They have been evaluated for their ability to inhibit cathepsin B activity and reduce tumor growth. However, they have shown critical limitations, including low anticancer efficacy and high toxicity, due to their low selectivity and delivery problems. In this study, we developed a novel peptide and drug conjugate (PDC)-based cathepsin B inhibitor using cathepsin-B-specific peptide (RR) and bile acid (BA). Interestingly, this RR and BA conjugate (RR-BA) was able to self-assemble in an aqueous solution, and as a result, it formed stable nanoparticles. The nano-sized RR-BA conjugate showed significant cathepsin B inhibitory effects and anticancer effects against mouse colorectal cancer (CT26) cells. Its therapeutic effect and low toxicity were also confirmed in CT26 tumor-bearing mice after intravenous injection. Therefore, based on these results, the RR-BA conjugate could be developed as an effective anticancer drug candidate for inhibiting cathepsin B in anticancer therapy.

6.
Bioconjug Chem ; 34(2): 333-344, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36735902

RESUMO

In the development of new drugs, typical polymer- or macromolecule-based nanocarriers suffer from manufacturing process complexity, unwanted systematic toxicity, and low loading capacity. However, carrier-free nanomedicines have made outstanding progress in drug delivery and pharmacokinetics, demonstrating most of the advantages associated with nanoparticles when applied in targeted anticancer therapy. Here, to overcome the problems of nanocarriers and conventional cytotoxic drugs, we developed a novel, carrier-free, self-assembled prodrug consisting of a hydrophobic palmitic (16-carbon chain n-hexadecane chain) moiety and hydrophilic group (or moiety) which is included in a caspase-3-specific cleavable peptide (Asp-Glu-Val-Asp, DEVD) and a cytotoxic drug (doxorubicin, DOX). The amphiphilic conjugate, the palmitic-DEVD-DOX, has the ability to self-assemble into nanoparticles in saline without the need for any carriers or nanoformulations. Additionally, the inclusion of doxorubicin is in its prodrug form and the apoptosis-specific DEVD peptide lead to the reduced side effects of doxorubicin in normal tissue. Furthermore, the carrier-free palmitic-DEVD-DOX nanoparticles could passively accumulate in the tumor tissues of tumor-bearing mice due to an enhanced permeation and retention (EPR) effect. As a result, the palmitic-DEVD-DOX conjugate showed an enhanced therapeutic effect compared with the unmodified DEVD-DOX conjugate. Therefore, this carrier-free palmitic-DEVD-DOX prodrug has great therapeutic potential to treat solid tumors, overcoming the problems of conventional chemotherapy and nanoparticles.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Pró-Fármacos , Camundongos , Animais , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Peptídeos , Neoplasias/tratamento farmacológico
7.
Pharmaceutics ; 14(7)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35890274

RESUMO

With rapidly growing knowledge in bioinformatics related to peptides and proteins, amino acid-based drug-design strategies have recently gained importance in pharmaceutics. In the past, peptide-based biomedicines were not widely used due to the associated severe physiological problems, such as low selectivity and rapid degradation in biological systems. However, various interesting peptide-based therapeutics combined with drug-delivery systems have recently emerged. Many of these candidates have been developed for anticancer therapy that requires precisely targeted effects and low toxicity. These research trends have become more diverse and complex owing to nanomedicine and antibody-drug conjugates (ADC), showing excellent therapeutic efficacy. Various newly developed peptide-drug conjugates (PDC), peptide-based nanoparticles, and prodrugs could represent a promising therapeutic strategy for patients. In this review, we provide valuable insights into rational drug design and development for future pharmaceutics.

8.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638867

RESUMO

Heparin has been extensively studied as a safe medicine and biomolecule over the past few decades. Heparin derivatives, including low-molecular-weight heparins (LMWH) and heparin pentasaccharide, are effective anticoagulants currently used in clinical settings. They have also been studied as functional biomolecules or biomaterials for various therapeutic uses to treat diseases. Heparin, which has a similar molecular structure to heparan sulfate, can be used as a remarkable biomedicine due to its uniquely high safety and biocompatibility. In particular, it has recently drawn attention for use in drug-delivery systems, biomaterial-based tissue engineering, nanoformulations, and new drug-development systems through molecular formulas. A variety of new heparin-based biomolecules and conjugates have been developed in recent years and are currently being evaluated for use in clinical applications. This article reviews heparin derivatives recently studied in the field of drug development for the treatment of various diseases.


Assuntos
Anticoagulantes , Materiais Biocompatíveis , Sistemas de Liberação de Medicamentos , Heparina de Baixo Peso Molecular , Engenharia Tecidual , Anticoagulantes/química , Anticoagulantes/uso terapêutico , Materiais Biocompatíveis/química , Materiais Biocompatíveis/uso terapêutico , Heparina de Baixo Peso Molecular/química , Heparina de Baixo Peso Molecular/uso terapêutico , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...