Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Ophthalmol ; 16(12): 1952-1961, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111929

RESUMO

AIM: To investigate the genetic and clinical characteristics of patients with a large heterozygous copy number deletion on 7q31.31-7q31.32. METHODS: A family with familial exudative vitreoretinopathy (FEVR) phenotype was included in the study. Whole-exome sequencing (WES) was initially used to locate copy number variations (CNVs) on 7q31.31-31.32, but failed to detect the precise breakpoint. The long-read sequencing, Oxford Nanopore sequencing Technology (ONT) was used to get the accurate breakpoint which is verified by quantitative real-time polymerase chain reaction (QPCR) and Sanger Sequencing. RESULTS: The proband, along with her father and younger brother, were found to have a heterozygous 4.5 Mb CNV deletion located on 7q31.31-31.32, which included the FEVR-related gene TSPAN12. The specific deletion was confirmed as del(7)(q31.31q31.32)chr7:g.119451239_123956818del. The proband exhibited a phase 2A FEVR phenotype, characterized by a falciform retinal fold, macular dragging, and peripheral neovascularization with leaking of fluorescence. These symptoms led to a significant decrease in visual acuity in both eyes. On the other hand, the affected father and younger brother showed a milder phenotype. CONCLUSION: The heterozygous CNV deletion located on 7q31.31-7q31.32 is associated with the FEVR phenotype. The use of long-read sequencing techniques is essential for accurate molecular diagnosis of genetic disorders.

2.
Front Genet ; 13: 978684, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36276932

RESUMO

Purpose: The study aims to identify genetic variants in five Chinese families with Keratoconus (KC) and describe the characteristics of parental corneal topography. Methods: Fifteen participants, including five probands and ten parents from five Chinese families with KC, were recruited for genetic and clinical analyses. Targeted next-generation sequencing using a custom-designed panel for KC was applied on the probands for variant identification. Sanger sequencing and cosegregation analysis of the suspected pathogenic variants were performed on the family members. The pathogenicities of variants were evaluated according to the American College of Medical Genetics and Genomics guidelines (ACMG). Pentacam 3D anterior segment analysis system was applied for keratectasia detection and the Corvis ST for corneal biomechanics measurement. Fifteen parameters were recorded, including nine keratectasia indicators (BAD-D, TP, Kmax, Df, Db, Dp, Dt, Da, ARTH), six corneal biomechanical indicators (CBI, DA ratio, SP-A1, IR, bIOP, TBI). Results: A total of six novel variants, including five missense variants and one frameshift variant, were detected in the HMX1, SLC4A11, TGFBI, PIKFYVE, and ZEB1 genes in five probands, all of which showed co-segregation of genotype and clinical phenotype and were determined to be pathogenic. The genetic model was autosomal dominant (AD) in four families and autosomal recessive (AR) in 1 family. The analysis of keratectasia and corneal biomechanical indicators of the proband's parents (first-generation relatives) in AD families revealed that there were several abnormal indexes in BAD-D, TP, Kmax, Df, Db, Dp, Dt, Da, CBI, DA ratio, SP-A1, IR, bIOP and TBI test indexes, showing clinical characteristics of incipient KC. Conclusion: Our study shows that variants in HMX1, SLC4A11, TGFBI, PIKFYVE, and ZEB1 were associated with KC. Our study extends the gene spectrum associated with KC, provides novel insights into KC phenotypic assessments, and contributes to early diagnosis for these patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...