Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 242(Pt 4): 125137, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37276907

RESUMO

Chitosan modified AGQD (amine modified graphene oxide quantum dots) and then combined with H3PW12O40 to obtain CSx@AGQD-HPW12 via facile process and applied for CIP removal through pre-adsorption and photocatalytic processes. The application of chitosan could regulate the morphology and photoelectric properties effectively. CS0.5@AGQD-HPW12 was found to have the optimal CIP removal performance among all the products, the corresponding adsorption removal efficiency and pre-adsorption photocatalysis process were 72.1 % and 98.8 %, respectively. Results of toxicity assessment confirmed photocatalytic degradation process could mitigate the ecotoxicity of CIP effectively. The optimal TOC (total organic carbon) removal efficiency was about 52.1 %. Possible pathways for CIP degradation and reaction mechanism were proposed based on the results of intermediates analysis and trapping experiments. This demonstrated a novel approach to chitosan application and an eco-friendly way to remove CIP by adsorption-photocatalysis process.


Assuntos
Quitosana , Pontos Quânticos , Poluentes Químicos da Água , Ciprofloxacina/química , Antibacterianos/química , Quitosana/química , Poluentes Químicos da Água/química , Adsorção
3.
Front Plant Sci ; 12: 789065, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35126416

RESUMO

Huanglongbing (HLB) has turned into a devastating botanical pandemic of citrus crops, caused by Candidatus Liberibacter asiaticus (CLas). However, until now the disease has remained incurable with very limited control strategies available. Restoration of the affected microbiomes in the diseased host through the introduction of an indigenous endophyte Bacillus subtilis L1-21 isolated from healthy citrus may provide an innovative approach for disease management. A novel half-leaf method was developed in vitro to test the efficacy of the endophyte L1-21 against CLas. Application of B. subtilis L1-21 at 104 colony forming unit (cfu ml-1) resulted in a 1,000-fold reduction in the CLas copies per gram of leaf midrib (107 to 104) in 4 days. In HLB-affected citrus orchards over a period of 2 years, the CLas incidence was reduced to < 3%, and CLas copies declined from 109 to 104 g-1 of diseased leaf midribs in the endophyte L1-21 treated trees. Reduction in disease incidence may corroborate a direct or an indirect biocontrol effect of the endophytes as red fluorescent protein-labeled B. subtilis L1-21 colonized and shared niche (phloem) with CLas. This is the first large-scale study for establishing a sustainable HLB control strategy through citrus endophytic microbiome restructuring using an indigenous endophyte.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA