Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 186: 369-382, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39097127

RESUMO

Immunotherapy, as a promising treatment strategy for cancer, has been widely employed in clinics, while its efficiency is limited by the immunosuppression of tumor microenvironment (TME). Tumor-associate macrophages (TAMs) are the most abundant immune cells infiltrating the TME and play a crucial role in immune regulation. Herein, a M0-type macrophage-mediated drug delivery system (PR-M) was designed for carrying Toll-like receptors (TLRs) agonist-loaded nanoparticles. When TLR agonist R848 was released by responding to the TME, the PR-Ms were polarized from M0-type to M1-type and TAMs were also stimulated from M2-type to M1-type, which eventually reversed the immunosuppressive states of TME. By synergizing with the released R848 agonists, the PR-M significantly activated CD4+ and CD8+ T cells in the TME and turned the 'cold' tumor into 'hot' tumor by regulating the secretion of cytokines including IFN-γ, TNF-α, IL-10, and IL-12, thus ultimately promoting the activation of antitumor immunity. In a colorectal cancer mouse model, the PR-M treatment effectively accumulated at the tumor site, with a 5.47-fold increase in M1-type and a 65.08 % decrease in M2-type, resulting in an 85.25 % inhibition of tumor growth and a 87.55 % reduction of tumor volume compared with the non-treatment group. Our work suggests that immune cell-mediated drug delivery systems can effectively increase drug accumulation at the tumor site and reduce toxic side effects, resulting in a strong immune system for tumor immunotherapy. STATEMENT OF SIGNIFICANCE: The formation of TME and the activation of TAMs create an immunosuppressive network that allows tumor to escape the immune system and promotes its growth and spread. In this study, we designed an M0-type macrophage-mediated drug delivery system (PR-M). It leverages the synergistic effect of macrophages and agonists to improve the tumor immunosuppressive micro-environment by increasing M1-type macrophages and decreasing M2-type macrophages. As part of the treatment, the drug-loaded macrophages endowed the system with excellent tumor targeting. Furthermore, loading R848 into TME-responsive nanoparticles could protect macrophages and reduce the potential toxicity of agonists. Further investigations demonstrated that the designed PR-M could be a feasible strategy with high efficacy in tumor targeting, drug loading, autoimmunity activation, and lower side effects.


Assuntos
Imunoterapia , Microambiente Tumoral , Microambiente Tumoral/efeitos dos fármacos , Animais , Imunoterapia/métodos , Camundongos , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Células RAW 264.7 , Imidazóis/farmacologia , Imidazóis/química , Linhagem Celular Tumoral , Nanopartículas/química , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Receptores Toll-Like/agonistas , Camundongos Endogâmicos BALB C , Humanos , Feminino , Camundongos Endogâmicos C57BL , Citocinas/metabolismo
2.
J Nanobiotechnology ; 22(1): 174, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609922

RESUMO

Photothermal therapy is favored by cancer researchers due to its advantages such as controllable initiation, direct killing and immune promotion. However, the low enrichment efficiency of photosensitizer in tumor site and the limited effect of single use limits the further development of photothermal therapy. Herein, a photo-responsive multifunctional nanosystem was designed for cancer therapy, in which myeloid-derived suppressor cell (MDSC) membrane vesicle encapsulated decitabine-loaded black phosphorous (BP) nanosheets (BP@ Decitabine @MDSCs, named BDM). The BDM demonstrated excellent biosafety and biochemical characteristics, providing a suitable microenvironment for cancer cell killing. First, the BDM achieves the ability to be highly enriched at tumor sites by inheriting the ability of MDSCs to actively target tumor microenvironment. And then, BP nanosheets achieves hyperthermia and induces mitochondrial damage by its photothermal and photodynamic properties, which enhancing anti-tumor immunity mediated by immunogenic cell death (ICD). Meanwhile, intra-tumoral release of decitabine induced G2/M cell cycle arrest, further promoting tumor cell apoptosis. In vivo, the BMD showed significant inhibition of tumor growth with down-regulation of PCNA expression and increased expression of high mobility group B1 (HMGB1), calreticulin (CRT) and caspase 3. Flow cytometry revealed significantly decreased infiltration of MDSCs and M2-macrophages along with an increased proportion of CD4+, CD8+ T cells as well as CD103+ DCs, suggesting a potentiated anti-tumor immune response. In summary, BDM realizes photothermal therapy/photodynamic therapy synergized chemotherapy for cancer.


Assuntos
Células Supressoras Mieloides , Neoplasias , Fotoquimioterapia , Biomimética , Linfócitos T CD8-Positivos , Decitabina/farmacologia , Terapia Fototérmica , Neoplasias/tratamento farmacológico
3.
Adv Healthc Mater ; 13(13): e2400068, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38320299

RESUMO

Cancer nanovaccines have attracted widespread attention by inducing potent cytotoxic T cell responses to improve immune checkpoint blockade (ICB) therapy, while the lack of co-stimulatory molecules limits their clinical applications. Here, a genetically engineered cancer cytomembrane nanovaccine is reported that simultaneously overexpresses co-stimulatory molecule CD40L and immune checkpoint inhibitor PD1 to elicit robust antitumor immunity for cancer immunotherapy. The CD40L and tumor antigens inherited from cancer cytomembranes effectively stimulate dendritic cell (DC)-mediated immune activation of cytotoxic T cells, while the PD1 on cancer cytomembranes significantly blocks PD1/PD-L1 signaling pathway, synergistically stimulating antitumor immune responses. Benefiting from the targeting ability of cancer cytomembranes, this nanovaccines formula shows an enhanced lymph node trafficking and retention. Compared with original cancer cytomembranes, this genetically engineered nanovaccine induces twofold DC maturation and shows satisfactory precaution efficacy in a breast tumor mouse model. This genetically engineered cytomembrane nanovaccine offers a simple, safe, and robust strategy by incorporating cytomembrane components and co-stimulatory molecules for enhanced cancer immunotherapy.


Assuntos
Vacinas Anticâncer , Células Dendríticas , Imunoterapia , Animais , Imunoterapia/métodos , Camundongos , Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Feminino , Humanos , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Linhagem Celular Tumoral , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/genética , Engenharia Genética/métodos , Nanopartículas/química , Camundongos Endogâmicos BALB C , Linfócitos T Citotóxicos/imunologia , Antígeno B7-H1/metabolismo , Antígeno B7-H1/imunologia , Neoplasias/terapia , Neoplasias/imunologia , Nanovacinas
4.
Anal Sci ; 20(12): 1697-700, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15636518

RESUMO

Trace amounts of Be (0.046-2.59 ng) in a dried marine organism sample (10 mg) could be accurately determined by GFAAS after treating with microwave digestion (HNO3/H2O2) at 85 degrees C for 10 min and using acetylacetone as a chelating agent in the presence of an acetate buffer (pH 6.0). The method detection limit (MDL, 3sigma) for Be was found to be 4.6 ng g(-1); the calibration graph was linear up to 259 ng g(-1). Good recoveries (98.5-105.0%) were obtained for eight marine organism samples (including five fish, one lobster, one oyster, and one algae) with a relative standard deviation (RSD, n = 3) < 3.0%. The proposed method could be applied measurements of Be in various marine organisms.


Assuntos
Berílio/análise , Biologia Marinha , Pentanonas/química , Animais , Quelantes/química , Eucariotos , Peixes , Ostreidae , Palinuridae , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Espectrofotometria Atômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA