Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38928342

RESUMO

Our study investigates the genetic mechanisms underlying the spotted leaf phenotype in rice, focusing on the spl43 mutant. This mutant is characterized by persistent reddish-brown leaf spots from the seedling stage to maturity, leading to extensive leaf necrosis. Using map-based cloning, we localized the responsible locus to a 330 Kb region on chromosome 2. We identified LOC_Os02g56000, named OsRPT5A, as the causative gene. A point mutation in OsRPT5A, substituting valine for glutamic acid, was identified as the critical factor for the phenotype. Functional complementation and the generation of CRISPR/Cas9-mediated knockout lines in the IR64 background confirmed the central role of OsRPT5A in controlling this trait. The qPCR results from different parts of the rice plant revealed that OsRPT5A is constitutively expressed across various tissues, with its subcellular localization unaffected by the mutation. Notably, we observed an abnormal accumulation of reactive oxygen species (ROS) in spl43 mutants by examining the physiological indexes of leaves, suggesting a disruption in the ROS system. Complementation studies indicated OsRPT5A's involvement in ROS homeostasis and catalase activity regulation. Moreover, the spl43 mutant exhibited enhanced resistance to Xanthomonas oryzae pv. oryzae (Xoo), highlighting OsRPT5A's role in rice pathogen resistance mechanisms. Overall, our results suggest that OsRPT5A plays a critical role in regulating ROS homeostasis and enhancing pathogen resistance in rice.


Assuntos
Mapeamento Cromossômico , Oryza , Doenças das Plantas , Folhas de Planta , Proteínas de Plantas , Espécies Reativas de Oxigênio , Xanthomonas , Oryza/genética , Oryza/microbiologia , Oryza/metabolismo , Folhas de Planta/genética , Folhas de Planta/microbiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Xanthomonas/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Resistência à Doença/genética , Mutação , Fenótipo , Regulação da Expressão Gênica de Plantas
2.
Neuroimage ; 295: 120652, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38797384

RESUMO

Accurate processing and analysis of non-human primate (NHP) brain magnetic resonance imaging (MRI) serves an indispensable role in understanding brain evolution, development, aging, and diseases. Despite the accumulation of diverse NHP brain MRI datasets at various developmental stages and from various imaging sites/scanners, existing computational tools designed for human MRI typically perform poor on NHP data, due to huge differences in brain sizes, morphologies, and imaging appearances across species, sites, and ages, highlighting the imperative for NHP-specialized MRI processing tools. To address this issue, in this paper, we present a robust, generic, and fully automated computational pipeline, called non-human primates Brain Extraction and Segmentation Toolbox (nBEST), whose main functionality includes brain extraction, non-cerebrum removal, and tissue segmentation. Building on cutting-edge deep learning techniques by employing lifelong learning to flexibly integrate data from diverse NHP populations and innovatively constructing 3D U-NeXt architecture, nBEST can well handle structural NHP brain MR images from multi-species, multi-site, and multi-developmental-stage (from neonates to the elderly). We extensively validated nBEST based on, to our knowledge, the largest assemblage dataset in NHP brain studies, encompassing 1,469 scans with 11 species (e.g., rhesus macaques, cynomolgus macaques, chimpanzees, marmosets, squirrel monkeys, etc.) from 23 independent datasets. Compared to alternative tools, nBEST outperforms in precision, applicability, robustness, comprehensiveness, and generalizability, greatly benefiting downstream longitudinal, cross-sectional, and cross-species quantitative analyses. We have made nBEST an open-source toolbox (https://github.com/TaoZhong11/nBEST) and we are committed to its continual refinement through lifelong learning with incoming data to greatly contribute to the research field.


Assuntos
Encéfalo , Aprendizado Profundo , Imageamento por Ressonância Magnética , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Macaca mulatta , Neuroimagem/métodos , Pan troglodytes/anatomia & histologia , Envelhecimento/fisiologia
3.
Adv Mater ; 36(7): e2306488, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37844257

RESUMO

Because the tumor-draining lymph nodes (TDLNs) microenvironment is commonly immunosuppressive, oncolytic microbe-induced tumor antigens aren't sufficiently cross-primed tumor specific T cells through antigen-presenting cells (e.g., dendritic cells (DCs)) in TDLNs. Herein, this work develops the micro-to-nano oncolytic microbial therapeutics based on pyranose oxidase (P2 O) overexpressed Escherichia coli (EcP) which are simultaneously encapsulated by PEGylated mannose and low-concentrated photosensitizer nanoparticles (NPs). Following administration, P2 O from this system generates toxic hydrogen peroxide for tumor regression and leads to the release of tumor antigens. The "microscale" EcP is triggered, following exposure to the laser irradiation, to secrete the "nanoscale" bacterial outer membrane vesicles (OMVs). The enhanced TDLNs delivery via OMVs significantly regulates the TDLNs immunomicroenvironment, promoting the maturation of DCs to potentiate tumor antigen-specific T cells immune response. The micro-to-nano oncolytic microbe is leveraged to exert tumor killing and remold TDLNs for initiating potent activation of DCs, providing promising strategies to facilitate microbial cancer vaccination.


Assuntos
Neoplasias , Humanos , Imunoterapia , Antígenos de Neoplasias , Células Dendríticas , Linfonodos , Microambiente Tumoral
4.
Nat Genet ; 55(10): 1745-1756, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37679493

RESUMO

Exploitation of crop heterosis is crucial for increasing global agriculture production. However, the quantitative genomic analysis of heterosis was lacking, and there is currently no effective prediction tool to optimize cross-combinations. Here 2,839 rice hybrid cultivars and 9,839 segregation individuals were resequenced and phenotyped. Our findings demonstrated that indica-indica hybrid-improving breeding was a process that broadened genetic resources, pyramided breeding-favorable alleles through combinatorial selection and collaboratively improved both parents by eliminating the inferior alleles at negative dominant loci. Furthermore, we revealed that widespread genetic complementarity contributed to indica-japonica intersubspecific heterosis in yield traits, with dominance effect loci making a greater contribution to phenotypic variance than overdominance effect loci. On the basis of the comprehensive dataset, a genomic model applicable to diverse rice varieties was developed and optimized to predict the performance of hybrid combinations. Our data offer a valuable resource for advancing the understanding and facilitating the utilization of heterosis in rice.


Assuntos
Vigor Híbrido , Oryza , Humanos , Vigor Híbrido/genética , Oryza/genética , Melhoramento Vegetal , Fenótipo , Alelos
5.
Mater Today Bio ; 20: 100644, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37214549

RESUMO

Self-assembled short peptides have intrigued scientists due to the convenience of synthesis, good biocompatibility, low toxicity, inherent biodegradability and fast response to change in the physiological environment. Therefore, it is necessary to present a comprehensive summary of the recent advances in the last decade regarding the construction, route of administration and application of self-assembled short peptides based on the knowledge on their unique and specific ability of self-assembly. Herein, we firstly explored the molecular mechanisms of self-assembly of short peptides, such as non-modified amino acids, as well as Fmoc-modified, N-functionalized, and C-functionalized peptides. Next, cell penetration, fusion, and peptide targeting in peptide-based drug delivery were characterized. Then, the common administration routes and the potential pharmaceutical applications (drug delivery, antibacterial activity, stabilizers, imaging agents, and applications in bioengineering) of peptide drugs were respectively summarized. Last but not least, some general conclusions and future perspectives in the relevant fields were briefly listed. Although with certain challenges, great opportunities are offered by self-assembled short peptides to the fascinating area of drug development.

6.
Adv Mater ; 35(28): e2212210, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37002917

RESUMO

Despite the superior tumor lytic efficacy of oncolytic viruses (OVs), their systemic delivery still faces the challenges of limited circulating periods, poor tumor tropism, and spontaneous antiviral immune responses. Herein, a virus-concealed tumor-targeting strategy enabling OVs' delivery toward lung metastasis via systemic administration is described. The OVs can actively infect, be internalized, and cloak into tumor cells. Then the tumor cells are subsequently treated with liquid-nitrogen-shocking to eliminate the pathogenicity. Such a Trojan Horse-like vehicle avoids virus neutralization and clearance in the bloodstream and facilitates tumor-targeted delivery for more than 110-fold virus enrichment in the tumor metastasis. In addition, this strategy can serve as a tumor vaccine and initiate endogenous adaptive antitumor effects through increasing the memory T cells and modulating the tumor immune microenvironment, including reducing the M2 macrophage, downregulating Treg cells, and priming T cells.


Assuntos
Vacinas Anticâncer , Neoplasias Pulmonares , Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Vírus Oncolíticos/fisiologia , Neoplasias/terapia , Neoplasias Pulmonares/terapia , Microambiente Tumoral , Imunoterapia
7.
Proc Natl Acad Sci U S A ; 120(5): e2214684120, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36693099

RESUMO

Embryo implantation, a crucial step in human reproduction, is tightly controlled by estrogen and progesterone (P4) via estrogen receptor alpha and progesterone receptor (PGR), respectively. Here, we report that N6-methyladenosine (m6A), the most abundant mRNA modification in eukaryotes, plays an essential role in embryo implantation through the maintenance of P4 signaling. Conditional deletion of methyltransferase-like 3 (Mettl3), encoding the m6A writer METTL3, in the female reproductive tract using a Cre mouse line with Pgr promoter (Pgr-Cre) resulted in complete implantation failure due to pre-implantation embryo loss and defective uterine receptivity. Moreover, the uterus of Mettl3 null mice failed to respond to artificial decidualization. We further found that Mettl3 deletion was accompanied by a marked decrease in PGR protein expression. Mechanistically, we found that Pgr mRNA is a direct target for METTL3-mediated m6A modification. A luciferase assay revealed that the m6A modification in the 5' untranslated region (5'-UTR) of Pgr mRNA enhances PGR protein translation efficiency in a YTHDF1-dependent manner. Finally, we demonstrated that METTL3 is required for human endometrial stromal cell decidualization in vitro and that the METTL3-PGR axis is conserved between mice and humans. In summary, this study provides evidence that METTL3 is essential for normal P4 signaling during embryo implantation via m6A-mediated translation control of Pgr mRNA.


Assuntos
Progesterona , Receptores de Progesterona , Feminino , Camundongos , Humanos , Animais , Progesterona/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Implantação do Embrião/genética , Útero/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos Knockout , RNA Mensageiro/metabolismo
8.
Biomed Pharmacother ; 159: 114273, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36696801

RESUMO

Ulcerative Colitis (UC) is a chronic disease, in the progression of which an immune overreaction may play an important role. IL-22 is a member of the IL-10 superfamily of cytokines and is pleiotropic in immune regulation and inflammatory responses. IL-22 can produce protective effects, promote wound healing and tissue regeneration, while it can also induce inflammatory reactions when it is chronically overexpressed. Extensive literatures reported that IL-22 played an essential role in the pathogenic development of UC. IL-22 participates in the whole disease process of UC involving signaling pathways, gene expression regulation, and intestinal flora imbalance, making IL-22 a possible candidate for the treatment of UC. In this paper, the latest knowledge to further elucidate the role of IL-22 in UC was summarized and analyzed.


Assuntos
Colite Ulcerativa , Humanos , Colite Ulcerativa/patologia , Interleucinas/metabolismo , Citocinas/metabolismo , Inflamação , Interleucina 22
9.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36430644

RESUMO

Rice spotted-leaf mutants are ideal materials to study the molecular mechanism underlying programmed cell death and disease resistance in plants. LOC_Os07g04820 has previously been identified as the candidate gene responsible for the spotted-leaf phenotype in rice Spotted-leaf 26 (Spl26) mutant. Here, we cloned and validated that LOC_Os07g04820 is the locus controlling the spotted-leaf phenotype of Spl26 by reverse functional complementation and CRISPR/Cas9-mediated knockout of the mutant allele. The recessive wild-type spl26 allele (Oryza sativa spotted-leaf 26, Osspl26) is highly conservative in grass species and encodes a putative G-type lectin S-receptor-like serine/threonine protein kinase with 444 amino acid residuals. OsSPL26 localizes to the plasma membrane and can be detected constitutively in roots, stems, leaves, sheaths and panicles. The single base substitution from T to A at position 293 leads to phenylalanine/tyrosine replacement at position 98 in the encoded protein in the mutant and induces excessive accumulation of H2O2, leading to oxidative damage to cells, and finally, formation of the spotted-leaf phenotype in Spl26. The formation of lesions not only affects the growth and development of the plants but also activates the defense response and enhances the resistance to the bacterial blight pathogen, Xanthomonas oryzae pv. oryzae. Our results indicate that the gain-of-function by the mutant allele OsSpl26 positively regulates cell death and immunity in rice.


Assuntos
Oryza , Oryza/metabolismo , Mutação com Ganho de Função , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/metabolismo , Imunidade Vegetal/genética
10.
Biol Reprod ; 107(1): 237-249, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35766401

RESUMO

The induction of primordial germ-like cells (PGCLCs) from pluripotent stem cells (PSCs) provides a powerful system to study the cellular and molecular mechanisms underlying germline specification, which are difficult to study in vivo. The studies reveal the existence of a species-specific mechanism underlying PGCLCs between humans and mice, highlighting the necessity to study regulatory networks in more species, especially in primates. Harnessing the power of single-cell RNA sequencing (scRNA-seq) analysis, the detailed trajectory of human PGCLCs specification in vitro has been achieved. However, the study of nonhuman primates is still needed. Here, we applied an embryoid body (EB) differentiation system to induce PGCLCs specification from cynomolgus monkey male and female PSCs, and then performed high throughput scRNA-seq analysis of approximately 40 000 PSCs and cells within EBs. We found that EBs provided a niche for PGCLCs differentiation by secreting growth factors critical for PGCLC specification, such as bone morphogenetic protein 2 (BMP2), BMP4, and Wnt Family Member 3. Moreover, the developmental trajectory of PGCLCs was reconstituted, and gene expression dynamics were revealed. Our study outlines the roadmap of PGCLC specification from PSCs and provides insights that will improve the differentiation efficiency of PGCLCs from PSCs.


Assuntos
Células-Tronco Pluripotentes , Análise de Célula Única , Animais , Diferenciação Celular/genética , Feminino , Células Germinativas/metabolismo , Humanos , Macaca fascicularis/genética , Masculino , Camundongos , RNA/metabolismo
11.
Nano Lett ; 22(12): 5055-5064, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35583490

RESUMO

Oncolytic viruses (OVs) have been widely used as anticancer therapeutics because of their systemic immune responses during viral replication. However, the low enrichment of OVs within tumors and limited immune activation have hindered their clinical application. Herein, we proposed the concept of bacteria-assisted targeting of OVs to tumors, with liposome-cloaked oncolytic adenoviruses (OAs) conjugated onto tumor-homing Escherichia coli BL21 (designated as E. coli-lipo-OAs) for enhanced cancer immunotherapy. Notably, the enrichment of OAs transported by self-propelled bacterial microbe vehicles in E. coli-lipo-OAs in a nonsmall cell lung tumor can be potentiated by more than 170-fold compared with that of intravenously injected bare OAs. In vivo studies further revealed that E. coli-lipo-OAs administered intravenously significantly enhanced antitumor immunity through bacterial-viral-augmented immune responses. Our findings suggest that the self-driving microbe vehicle as a systemic delivery system for OVs can be a potent platform for developing future anticancer biotherapeutics at the clinical level.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Escherichia coli , Humanos , Imunoterapia , Neoplasias/terapia , Vírus Oncolíticos/genética
12.
Physiol Genomics ; 54(6): 187-195, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35468005

RESUMO

In most mammalian species, the testis descends from the abdomen into the scrotum during fetal or neonatal life. The failure of testicular descent, a pathological condition known as cryptorchidism, has long been the subject of scientific interest in a wide range of fields, including medicine, developmental biology, and evolutionary biology. In this study, we analyzed global gene expression changes associated with experimental cryptorchidism in mice by using RNA-seq. A total of 453 differentially expressed genes were identified, of which 236 genes were upregulated, and 217 genes were downregulated. Gene ontology, pathway, and gene network analysis highlighted the activation of inflammatory response in experimental cryptorchidism. By examining the promoter regions of differentially expressed genes, we identified 12 causal transcription factors. In addition, we also induced experimental cryptorchidism in two cynomolgus monkeys and performed RNA-seq. A cross-species comparison was performed at the gene expression level. Our study provides a valuable resource for further understanding the molecular mechanisms of cryptorchidism in mammals.


Assuntos
Criptorquidismo , Animais , Criptorquidismo/genética , Criptorquidismo/metabolismo , Criptorquidismo/patologia , Perfilação da Expressão Gênica , Humanos , Macaca fascicularis/genética , Masculino , Mamíferos/genética , Testículo/metabolismo , Transcriptoma/genética
13.
Biomed Pharmacother ; 138: 111427, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33706134

RESUMO

Ulcerative colitis (UC) is a major type of inflammatory bowel disease (IBD), which is characterized by diffuse inflammation of the mucosa of the colon and rectum. Abdominal pain, diarrhea, and hematochezia are UC's main clinical manifestations. Pathogenesis of UC has not yet been clearly elucidated, but it is considered to result from dysregulated expressions of molecules engaged in proinflammatory and anti-inflammatory processes. CXCL8 is one of the most important proinflammatory factors which play a vital role in many inflammatory diseases including UC. The CXCL8-CXCR1/2 axis participates in the pathogenesis of UC through multiple signaling pathways, including PI3k/Akt, MAPKs and NF-κB signaling pathways. Meanwhile, more and more studies in recent years have shown that UC patients have specific non-coding RNA (ncRNA) expression profiles, which may be involved in the occurrence and development of inflammation. In this article, we analyzed the CXCL8-CXCR1/2 axis related signaling pathways and ncRNAs in UC, as well as recent advances in our understanding of the CXCL8-CXCR1/2 axis inhibition as a therapeutic strategy against UC.


Assuntos
Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Interleucina-8/biossíntese , Interleucina-8/genética , Mucosa Intestinal/metabolismo , Animais , Colite Ulcerativa/patologia , Humanos , Mucosa Intestinal/patologia , RNA não Traduzido/biossíntese , RNA não Traduzido/genética , Transdução de Sinais/fisiologia
14.
J Food Sci ; 86(2): 628-634, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33462857

RESUMO

In this study, the bioaccessibility and antioxidant activity of phenolic compounds in insoluble dietary fiber (IDF) and soluble dietary fiber (SDF) derived from hulless barley were evaluated by an in vitro gastrointestinal (GI) digestion model. The total phenolic and flavonoid contents, as well as antioxidant activity of phenolic compounds in IDF and SDF following GI digestion were studied. The results obtained showed an increase in total phenolic and flavonoid contents, as well antioxidant activity compared with undigested extracts. Moreover, the bioaccessibility indexes of phenolic compounds in IDF and SDF were 490.90 ± 3.10% and 1608.79 ± 40.63% respectively, after GI digestion. Similarly, the bioaccessibility indexes of flavonoids in IDF and SDF were 179.20 ± 15.16% and 814.36 ± 26.31%, respectively. Based on our findings, individual phenolic compounds show different stability in the digestion process. The content of ferulic acid has different trends in IDF and SDF during GI digestion. This study could provide a scientific basis for hulless barley DF as valuable food additives. PRACTICAL APPLICATION: Hulless barley is a unique cereal with potential health benefits due to high dietary fiber (DF) content and phenolic compounds. Phenolic compounds could be linked to DF through chemical bonds. Phenolic compounds in DF can be slowly and continuously released under acidic, alkaline, and enzymatic conditions by in vitro gastrointestinal digestion, which could maintain a higher phenolic concentration in the bloodstream and be beneficial for human health. This study could provide a scientific basis for hulless barley DF as valuable food additives.


Assuntos
Antioxidantes/farmacologia , Fibras na Dieta/farmacologia , Hordeum/química , Fenóis/farmacologia , Antioxidantes/química , Reatores Biológicos , Fibras na Dieta/análise , Digestão , Humanos , Fenóis/análise , Extratos Vegetais/química
15.
Nat Commun ; 11(1): 2325, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393762

RESUMO

Common polygenic diseases result from compounded risk contributed by multiple genetic variants, meaning that simultaneous correction or introduction of single nucleotide variants is required for disease modeling and gene therapy. Here, we show precise, efficient, and simultaneous multiplex base editing of up to three target sites across 11 genes/loci in cynomolgus monkey embryos using CRISPR-based cytidine- and adenine-base editors. Unbiased whole genome sequencing demonstrates high specificity of base editing in monkey embryos. Our data demonstrate feasibility of multiplex base editing for polygenic disease modeling in primate zygotes.


Assuntos
Edição de Genes/métodos , Animais , Sequência de Bases , Embrião de Mamíferos/metabolismo , Éxons/genética , Feto/metabolismo , Fígado/metabolismo , Macaca fascicularis/embriologia , Mutação/genética
16.
Reprod Biol ; 20(3): 417-423, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32471803

RESUMO

Preimplantation genetic diagnosis (PGD) is a technique that is commonly used during assisted reproduction in the clinics to eliminate genetically abnormal embryos before implantation. The blastomere biopsy technique has risks related to the embryo, but blastocyst biopsy has not been systematically evaluated in relation to effects after birth, and the resulting offspring have not been followed up on. We designed a series of experiments to evaluate the risk of blastocyst biopsy on the resulting progeny. Mice were divided into a PGD group and a control group. The former was the progeny of mice that underwent blastocyst biopsy and the latter was delivered through a normal pregnancy without blastocyst biopsy. Each group consisted of 15 animals. We found no effects of blastocyst biopsy on reproductive capacities and weight gain. As for neurobehavioral evaluation between both groups, there were no significant differences in tail suspension test, sucrose preference test, the open field test and the elevated plus maze. Western blotting, immunohistochemistry and quantitative RT-PCR results showed that the expression levels of MBP, PRDX5 and UCHL1 in the PGD group were not significantly different compared to the control group, but SNAP-α expression in the PGD group was lower than that in control group. In summary, we concluded that blastocyst biopsy had no adverse effect on the general growth and behavior in mice. However, blastocyst biopsy effected the expression of SNAP-α. Therefore, the safety of blastocyst biopsy requires further evaluation.


Assuntos
Blastocisto/metabolismo , Diagnóstico Pré-Implantação/métodos , Proteínas SNARE/metabolismo , Animais , Comportamento Animal/fisiologia , Biópsia , Implantação do Embrião , Feminino , Fertilização in vitro , Camundongos , Proteína Básica da Mielina/metabolismo , Peroxirredoxinas/metabolismo , Ubiquitina Tiolesterase/metabolismo
17.
Onco Targets Ther ; 13: 2957-2972, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308428

RESUMO

INTRODUCTION: Aberrant expression of long non-coding RNAs (lncRNAs) has been implicated in the tumorigenesis and progression of colon cancer. Lymphoid enhancer-binding factor 1 antisense RNA 1 (LEF1-AS1), a highly conserved and newly discovered long non-coding RNA, has been reported to be upregulated and correlated with poor prognosis in colon cancer, but the exact role of it remains uncertain. MATERIALS AND METHODS: In our study, the biological functions of LEF1-AS1 in colon cancer were analyzed by cell viability assay, colony formation assay, scratch wound healing assay, transwell cell invasion assay, soft agar assay, luciferase reporter assay, pull down assay, tumor xenograft model and Western blot. RESULTS: We found that LEF1-AS1 was upregulated in colon cancer patients and correlated with poor overall survival and recurrent-free survival. Besides, enforced expression of LEF1-AS1 in HT29 and T84 cells promoted migration, invasion, anchorage-independent growth, tumor xenograft formation and lung metastasis, while knockdown of LEF1-AS1 in COLO320 cells suppressed cell migration, invasion, anchorage-independent growth and tumor xenograft formation. In addition, LEF1-AS1 was directly interacted and inversely correlated with miR-30-5p in colon cancer, and SOX9 was a downstream target for miR-30-5p. LEF1-AS1 overexpression increased the expression level of SOX9, and restoration of SOX9 attenuated the effects caused by LEF1-AS1 knockdown in cell migration, invasion, anchorage-independent growth and tumor xenograft formation. CONCLUSION: Our results indicated that LEF1-AS1 promoted migration, invasion and metastasis of colon cancer cells partially through miR-30-5p/SOX9 axis. The oncogenic LEF1-AS1 could be a potential prognostic biomarker for colon cancer.

18.
Drug Deliv ; 27(1): 323-333, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32090639

RESUMO

Although microRNAs (miRNAs)-based cancer therapy strategies have been proved to be efficient and superior to chemotherapeutic agents in certain extent, the unstable properties of miRNAs significantly impaired the wide application. Therefore, how to safely deliver the miRNAs to the targeted site of action is the most pivotal step to achieve the ideal treatment effect. In the present work, the miR-128-3p, which is able of inducing chromosomal instability, was loaded into the nanocomplexes developed by the PEG-PDMAEMA (PDMAEMA-NP). By this way, the miR-128-3p was shielded from exposure to various degrading enzymes in bloodstream. Additionally, the PEGylation endowed the PDMAEMA-NP with long time of circulation as demonstrated in vivo by pharmacokinetics investigation. To target and deliver the miR-128-3p to the site of action, a tumor-homing peptide CPKSNNGVC, which specifically targets the monocarboxylate transporter 1 (MCT1), was decorated on the surface of PDMAEMA-NP. Both in vitro and in vivo experiments demonstrated that more efficient delivery of miR-128-3p to cells or tumor tissues was obtained by the PDMAEMA-NP than plasmid. Additionally, modification of C peptides further enhanced the tumor accumulation of miR-128-3p, and in turn contributed to the stronger tumor growth inhibition effect. Underlying mechanisms study revealed that the miR-128-3p inhibited the growth, migration, and invasion of colorectal cancer (CRC) cells and progress of CRC tissues through silence of the activity of PI3K/AKT and MEK/ERK pathway. By this way, the chemotherapy effect of 5-Fluorouracil (5-Fu) was dramatically improved after co-treating the cells with miR-128-3p formulations.


Assuntos
Neoplasias Colorretais/terapia , Fluoruracila/farmacologia , MicroRNAs/genética , Nanopartículas , Animais , Antimetabólitos Antineoplásicos , Neoplasias Colorretais/genética , Humanos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Metacrilatos/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nylons/química , Fosfatidilinositol 3-Quinase/metabolismo , Polietilenoglicóis/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley
19.
Front Genet ; 10: 803, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31850052

RESUMO

Colorectal cancer (CRC) is one of the most common types of human cancers. However, the mechanisms underlying CRC progression remained elusive. This study identified differently expressed messenger RNAs (mRNAs), long noncoding RNAs (lncRNAs), and small nucleolar RNAs (snoRNAs) between pre-therapeutic biopsies and post-therapeutic resections of locally advanced CRC by analyzing a public dataset, GSE94104. We identified 427 dysregulated mRNAs, 4 dysregulated lncRNAs, and 19 dysregulated snoRNAs between pre- and post-therapeutic locally advanced CRC samples. By constructing a protein-protein interaction network and co-expressing networks, we identified 10 key mRNAs, 4 key lncRNAs, and 7 key snoRNAs. Bioinformatics analysis showed therapy-related mRNAs were associated with nucleosome assembly, chromatin silencing at recombinant DNA, negative regulation of gene expression, and DNA replication. Therapy-related lncRNAs were associated with cell adhesion, extracellular matrix organization, angiogenesis, and sister chromatid cohesion. In addition, therapy-related snoRNAs were associated with DNA replication, nucleosome assembly, and telomere organization. We thought this study provided useful information for identifying novel biomarkers for CRC.

20.
Nat Commun ; 10(1): 2982, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31278256

RESUMO

Hybrid rice breeding for exploiting hybrid vigor, heterosis, has greatly increased grain yield. However, the heterosis-related genes associated with rice grain production remain largely unknown, partly because comprehensive mapping of heterosis-related traits is still labor-intensive and time-consuming. Here, we present a quantitative trait locus (QTL) mapping method, GradedPool-Seq, for rapidly mapping QTLs by whole-genome sequencing of graded-pool samples from F2 progeny via bulked-segregant analysis. We implement this method and map-based cloning to dissect the heterotic QTL GW3p6 from the female line. We then generate the near isogenic line NIL-FH676::GW3p6 by introgressing the GW3p6 allele from the female line Guangzhan63-4S into the male inbred line Fuhui676. The NIL-FH676::GW3p6 exhibits grain yield highly increased compared to Fuhui676. This study demonstrates that it may be possible to achieve a high level of grain production in inbred rice lines without the need to construct hybrids.


Assuntos
Mapeamento Cromossômico/métodos , Grão Comestível/genética , Vigor Híbrido/genética , Oryza/genética , Melhoramento Vegetal/métodos , Cromossomos de Plantas/genética , Locos de Características Quantitativas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...