Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Microbiol ; 122: 104550, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38839218

RESUMO

Listeria monocytogenes presents significant risk to human health due to its high resistance and capacity to form toxin-producing biofilms that contaminate food. The objective of this study was to assess the inhibitory effect of citronella aldehyde (CIT) on L. monocytogenes and investigate the underlying mechanism of inhibition. The results indicated that the minimum inhibitory concentration (MIC) and Minimum sterilisation concentration (MBC) of CIT against L. monocytogenes was 2 µL/mL. At this concentration, CIT was able to effectively suppress biofilm formation and reduce metabolic activity. Crystalline violet staining and MTT reaction demonstrated that CIT was able to inhibit biofilm formation and reduce bacterial cell activity. Furthermore, the motility assessment assay revealed that CIT inhibited bacterial swarming and swimming. Scanning electron microscopy (SEM) and laser confocal microscopy (LSCM) observations revealed that CIT had a significant detrimental effect on L. monocytogenes cell structure and biofilm integrity. LSCM also observed that nucleic acids of L. monocytogenes were damaged in the CIT-treated group, along with an increase in bacterial extracellular nucleic acid leakage. The proteomic results also confirmed the ability of CIT to affect the expression of proteins related to processes including metabolism, DNA replication and repair, transcription and biofilm formation in L. monocytogenes. Consistent with the proteomics results are ATPase activity and ATP content of L. monocytogenes were significantly reduced following treatment with various concentrations of CIT. Notably, CIT showed good inhibitory activity against L. monocytogenes on cheese via fumigation at 4 °C.This study establishes a foundation for the potential application of CIT in food safety control.


Assuntos
Biofilmes , Queijo , Listeria monocytogenes , Testes de Sensibilidade Microbiana , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/fisiologia , Queijo/microbiologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Antibacterianos/farmacologia , Conservação de Alimentos/métodos , Microbiologia de Alimentos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Aldeídos/farmacologia , Extratos Vegetais/farmacologia , Monoterpenos Acíclicos/farmacologia
2.
Micromachines (Basel) ; 14(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38138353

RESUMO

The 7075 aluminum alloy deep hole pipe finds extensive applications in the aerospace industry due to its remarkable attributes, such as high strength, exceptional wear resistance, and favorable mechanical properties. However, traditional boring processes for 7075 aluminum alloy deep hole pipes tend to generate elevated cutting forces, potentially leading to deformation issues in these deep holes. In response to these challenges, this study introduces a novel approach involving the use of a two-dimensional ultrasonic elliptical vibration tool. This tool features a single excitation asymmetric structure and aims to enhance the deep hole machining process in 7075 aluminum alloy. The research methodology involved several key steps. First, theoretical analysis and simulation were performed to study the motion trajectory of the cutting edge of the tool. Second, practical experiments were conducted comparing two-dimensional ultrasonic elliptical vibration boring with conventional boring for 7075 aluminum alloy deep hole pipes. The results demonstrate that, in contrast to conventional boring, two-dimensional ultrasonic vibration boring could achieve a maximum reduction of 54.1% and an average reduction of 50.4% in the roundness value of the deep holes. The impact of machining parameters on deep hole roundness is assessed through experimental analysis, leading to the determination of optimal processing parameters. In summary, this experimental research has a certain reference significance for the application of 7075 aluminum alloy deep hole parts in the aerospace field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA