Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38005581

RESUMO

In the coastal areas of China, the eutrophication of seawater leads to the continuous occurrence of red tide, which has caused great damage to Marine fisheries and aquatic resources. Therefore, the detection and prediction of red tide have important research significance. The rapid development of optical remote sensing technology and deep-learning technology provides technical means for realizing large-scale and high-precision red tide detection. However, the difficulty of the accurate detection of red tide edges with complex boundaries limits the further improvement of red tide detection accuracy. In view of the above problems, this paper takes GOCI data in the East China Sea as an example and proposes an improved U-Net red tide detection method. In the improved U-Net method, NDVI was introduced to enhance the characteristic information of the red tide to improve the separability between the red tide and seawater. At the same time, the ECA channel attention mechanism was introduced to give different weights according to the influence of different bands on red tide detection, and the spectral characteristics of different channels were fully mined to further extract red tide characteristics. A shallow feature extraction module based on Atrous Spatial Pyramid Convolution (ASPC) was designed to improve the U-Net model. The red tide feature information in a multi-scale context was fused under multiple sampling rates to enhance the model's ability to extract features at different scales. The problem of limited accuracy improvement in red tide edge detection with complex boundaries is solved via the fusion of deep and shallow features and multi-scale spatial features. Compared with other methods, the method proposed in this paper achieves better results and can detect red tide edges with complex boundaries, and the accuracy, precision, recall, and F1-score are 95.90%, 97.15%, 91.53%, and 0.94, respectively. In addition, the red tide detection experiments in other regions with relatively concentrated distribution also prove that the method has good applicability.

2.
Sensors (Basel) ; 22(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35957476

RESUMO

The accurate and timely identification of the degree of building damage is critical for disaster emergency response and loss assessment. Although many methods have been proposed, most of them divide damaged buildings into two categories-intact and damaged-which is insufficient to meet practical needs. To address this issue, we present a novel convolutional neural network-namely, the earthquake building damage classification net (EBDC-Net)-for assessment of building damage based on post-disaster aerial images. The proposed network comprises two components: a feature extraction encoder module, and a damage classification module. The feature extraction encoder module is employed to extract semantic information on building damage and enhance the ability to distinguish between different damage levels, while the classification module improves accuracy by combining global and contextual features. The performance of EBDC-Net was evaluated using a public dataset, and a large-scale damage assessment was performed using a dataset of post-earthquake unmanned aerial vehicle (UAV) images. The results of the experiments indicate that this approach can accurately classify buildings with different damage levels. The overall classification accuracy was 94.44%, 85.53%, and 77.49% when the damage to the buildings was divided into two, three, and four categories, respectively.


Assuntos
Desastres , Terremotos , Coleta de Dados , Redes Neurais de Computação , Semântica
3.
PeerJ Comput Sci ; 7: e770, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34825057

RESUMO

The COVID-19 pandemic is the most serious catastrophe since the Second World War. To predict the epidemic more accurately under the influence of policies, a framework based on Independently Recurrent Neural Network (IndRNN) with fine-tuning are proposed for predict the epidemic development trend of confirmed cases and deaths in the United Stated, India, Brazil, France, Russia, China, and the world to late May, 2021. The proposed framework consists of four main steps: data pre-processing, model pre-training and weight saving, the weight fine-tuning, trend predicting and validating. It is concluded that the proposed framework based on IndRNN and fine-tuning with high speed and low complexity, has great fitting and prediction performance. The applied fine-tuning strategy can effectively reduce the error by up to 20.94% and time cost. For most of the countries, the MAPEs of fine-tuned IndRNN model were less than 1.2%, the minimum MAPE and RMSE were 0.05%, and 1.17, respectively, by using Chinese deaths, during the testing phase. According to the prediction and validation results, the MAPEs of the proposed framework were less than 6.2% in most cases, and it generated lowest MAPE and RMSE values of 0.05% and 2.14, respectively, for deaths in China. Moreover, Policies that play an important role in the development of COVID-19 have been summarized. Timely and appropriate measures can greatly reduce the spread of COVID-19; untimely and inappropriate government policies, lax regulations, and insufficient public cooperation are the reasons for the aggravation of the epidemic situations. The code is available at https://github.com/zhhongsh/COVID19-Precdiction. And the prediction by IndRNN model with fine-tuning are now available online (http://47.117.160.245:8088/IndRNNPredict).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...