Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Res ; 27(1): 19, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36907873

RESUMO

BACKGROUND: Hydrogels have been widely used in many research fields owing to optical transparency, good biocompatibility, tunable mechanical properties, etc. Unlike typical hydrogels in the form of an unstructured bulk material, we developed aqueous dispersions of fiber-shaped hydrogel structures with high stability under ambient conditions and their application to various types of transparent soft cell culture interfaces with anisotropic nanoscale topography. METHOD: Nanofibers based on the polyvinyl alcohol and polyacrylic acid mixture were prepared by electrospinning and hydrogelified to nano-fibrous hydrogels (nFHs) after thermal crosslinking and sulfuric acid treatment. By modifying various material surfaces with positively-charged polymers, negatively-charged superabsorbent nFHs could be selectively patterned by employing micro-contact printing or horizontally aligned by applying shear force with a wired bar coater. RESULTS: The angular distribution of bar-coated nFHs was dramatically reduced to ± 20° along the applied shear direction unlike the drop-coated nFHs which exhibit random orientations. Next, various types of cells were cultured on top of transparent soft nFHs which showed good viability and attachment while their behaviors could be easily monitored by both upright and inverted optical microscopy. Particularly, neuronal lineage cells such as PC 12 cells and embryonic hippocampal neurons showed highly stretched morphology along the overall fiber orientation with aspect ratios ranging from 1 to 14. Furthermore, the resultant neurite outgrowth and migration behaviors could be effectively controlled by the horizontal orientation and the three-dimensional arrangement of underlying nFHs, respectively. CONCLUSION: We expect that surface modifications with transparent soft nFHs will be beneficial for various biological/biomedical studies such as fundamental cellular studies, neuronal/stem cell and/or organoid cultures, implantable probe/device coatings, etc.

2.
Biomacromolecules ; 23(11): 4547-4561, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36130109

RESUMO

A type of ultrathin films has been developed for suppressing capsule formation induced by medical silicone implants and hence reducing the inflammation response to such formation and the differentiation to myofibroblasts. The films were each fabricated from hyaluronic acid (HA) and modified ß-cyclodextrin (Mod-ß-CyD) polymer which was synthesized with a cyclodextrin with partially substituted quaternary amine. Ultrathin films comprising HA and Mod-ß-CyD or poly(allylamine hydrochloride) (PAH) were fabricated by using a layer-by-layer dipping method. The electrostatic interactions produced from the functional groups of Mod-ß-CyD and HA influenced the surface morphology, wettability, and bio-functional activity of the film. Notably, medical silicone implants coated with PAH/HA and Mod-ß-CyD multilayers under a low pH condition exhibited excellent biocompatibility and antibiofilm and anti-inflammation properties. Implantation of these nanoscale film-coated silicones showed a reduced capsular thickness as well as reduced TGFß-SMAD signaling, myofibroblast differentiation, biofilm formation, and inflammatory response levels. We expect our novel coating system to be considered a strong candidate for use in various medical implant applications in order to decrease implant-induced capsule formation.


Assuntos
Infecções Bacterianas , beta-Ciclodextrinas , Humanos , Ácido Hialurônico/química , Polímeros , Silicones/química
3.
Membranes (Basel) ; 12(3)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35323725

RESUMO

The membrane filtration process is the most widely used purification process in various industries due to its high separation efficiency, process simplicity, and low cost. Although there is a wide range of membrane products with diverse materials and pore sizes on the market, there is a technological gap between microfiltration and ultrafiltration membranes. Here we developed highly porous polyvinylidene fluoride (PVDF) membranes with a selective skin layer with a pore size range of 20 to 80 nm by using a thermal-vapor assisted phase separation method. Porous and bi-continuous sublayers were generated from spinodal decomposition induced by cooling. The overall membrane structure and pore size changed with the dope composition, while the pore size and thickness of the selective skin layer were effectively controlled by water vapor exposure. The excellent nanoparticle removal efficiencies of the prepared PVDF membranes were confirmed, indicating their potential application in high-level purification processes to remove small trace organic or inorganic impurities from various industrial fluids.

4.
Mater Sci Eng C Mater Biol Appl ; 98: 311-323, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30813033

RESUMO

Diagnosis of cancer by chemotherapy treatment, severe side effects caused by high dosages of cancer drugs include non-controlled cytotoxicity to bone marrow cells and immune cells. To overcome, we have synthesized nanoparticles with controlled sized hydroxyapatite (nHAp) materials doped and co-doped with silver and iron by co-precipitation, yielding materials that can treat both the infections and malignant tumors with non-cytotoxic nature to normal cells. Spherical and rod like morphologies were observed for the samples with higher Ag+ doping concentrations with average size of 50 ±â€¯5 nm and (75 × 22) ±â€¯5 nm2, whereas higher Ag+/Fe2+ co-doping concentrations yielded samples with spherical, rod-like, and flake-like structures. For samples nHAp and Ag+-nHAp samples were diamagnetic, whereas the Fe2+-nHAp and Ag+/Fe2+ co-doped samples were superparamagnetic. The in vitro biological toxicity study revealed that the Ag+/Fe2+-nHAp nanoparticles are effective for targeting to kill cancerous cells, for example, human cervical cancer (HeLa) cells efficiently while they are non-toxic to normal cells. Applying these nanoparticles for drug delivery system, 5-fluorouracil was loaded in the nanoparticles and studied its release kinetics. In the case of Ag+/Fe2+co-doped nHAp samples, a pulsatile drug release profile was observed, which the drug was released for about a week on varying the Ag+ and Fe2+ concentrations. The 5-fluorouracil release kinetics was well fitted by the first-order model with diffusion. Thus, nHAps co-doped with Ag+/Fe2+ material have the potential to lag the time on delivering the drug at site-specific could be with an application in biomedicine such as to treat malignant tumor without any bacterial side effect.


Assuntos
Durapatita/química , Ferro/química , Nanopartículas/química , Prata/química , Antibacterianos/química , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Células HeLa , Humanos
6.
ACS Appl Mater Interfaces ; 10(16): 13397-13405, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29616552

RESUMO

Hybrid films consisting of anisotropic octahedral gold nanoparticles (AuNPs) and polymers had their surfaces functionalized and were immobilized on surface plasmon resonance (SPR) sensors for biomolecule detection. Specifically, carboxylated octahedral AuNPs (C-Oh-AuNPs) and poly(allylamine hydrochloride) (PAH) were assembled as ultrathin films by using a layer-by-layer process. The ionic strength generated from the functional groups of C-Oh-AuNP and PAH influenced the composition, its surface morphology, and the reactivity of the film toward further chemical reactions such as the synthesis of spherical AuNPs (S-AuNPs). We were thus able to control the size and the structure of the C-Oh-AuNP and S-AuNPs converted to nano-raspberry-shaped particles. This hierarchical AuNP hybrid film exhibits much more sensitive and stable detection of biomolecules than regular flat chip systems, and this result may be due to the SPR of the AuNP at its surface being able to markedly enhance the local optical field of the chip. The micropatterning of the hybrid coating was also studied by using a soft lithographic patterning method. We, in particular, worked on creating multiplex patterns having different combinations of shapes and fluorescent colors. We expect our hybrid coating system with multicode biomolecular arrays to be used as a powerful platform for biosensor applications.


Assuntos
Nanopartículas Metálicas , Técnicas Biossensoriais , Ouro , Polímeros , Ressonância de Plasmônio de Superfície
7.
Biomater Res ; 22: 7, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29564150

RESUMO

BACKGROUND: Controlled drug delivery system is highly important for not only prolonged the efficacy of drug but also cellular development for tissue engineering. A number of biopolymer composites and nanostructured carriers behave been used for the controlled drug delivery of therapeutics. Recently, in vitro microfluidic devices that mimic the human body have been developed for drug-delivery applications. METHODS: A microfluidic channel was fabricated via a two-step process: (i) polydimethyl siloxane (PDMS) and curing agent were poured with a 10:2 mass ratio onto an acrylic mold with two steel pipes, and (ii) calcium alginate beads were synthesized using sodium alginate and calcium chloride solutions. Different amounts (10, 25, 50 µg) of graphene oxide (GO) were then added by Hummers method, and studies on the encapsulation and release of the model drug, risedronate (Ris), were performed using control hydrogel beads (pH 6.3), GO-containing beads (10GO, 25GO and 50GO), and different pH conditions. MC3T3 osteoblastic cells were cultured in a microchannel with Ris-loaded GO-hydrogel beads, and their proliferation, viability, attachment and spreading were assessed for a week. RESULTS: The spongy and textured morphology of pristine hydrogel beads was converted to flowery and rod-shaped structures in drug-loaded hydrogel beads at reduced pH (6.3) and at a lower concentration (10 µg) of GO. These latter 10GO drug-loaded beads rapidly released their cargo owing to the calcium phosphate deposited on the surface. Notably, beads containing a higher amount of GO (50GO) exhibited an extended drug-release profile. We further found that MC3T3 cells proliferated continuously in vitro in the microfluidic channel containing the GO-hydrogel system. MTT and live/dead assays showed similar proliferative potential of MC3T3 cells. Therefore, a microfluidic device with microchannels containing hydrogel beads formulated with different amounts of GO and tested under various pH conditions could be a promising system for controlled drug release. CONCLUSIONS: The GO and drug (risedronate, Rig) were directed loaded into a hydrogel placed in a microchannel. Through interactions such as hydrogen bonding between Go and the Rig-loaded GO-hydrogel beads, the bead-loaded microfluidic device supported MC3T3 proliferation and development as osteoblast without additional osteogenic differentiation supplements.

8.
Angew Chem Int Ed Engl ; 55(38): 11495-8, 2016 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-27513827

RESUMO

The preparation of bicontinuous nanoporous covalent frameworks, which are promising for caging active enzymes, is demonstrated. The frameworks have three- dimensionally continuous, hydrophilic pores with widths varying between 5 and 30 nm. Enzymes were infiltrated into the bicontinuous pore by applying a pressured enzyme solution. The new materials and methods allowed the amount of caged proteins to be controlled precisely. The resulting enzyme-loaded framework films could be recycled many times with nearly no loss of catalytic activity. Entropic trapping of proteins by a bicontinuous pore with the right size distribution is an unprecedented strategy toward facile in vitro utilization of biocatalysts.


Assuntos
Enzimas/química , Nanoporos , Biocatálise , Enzimas/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Lipase/química , Lipase/metabolismo , Ácido Oleico/metabolismo , Polietilenoglicóis/química , Fatores de Tempo
9.
Biotechnol Bioeng ; 113(10): 2107-12, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27043877

RESUMO

Antibodies that target intracellular proteins hold great promise in the development of novel therapeutic interventions for various diseases. In particular, antibodies that can cross cellular membranes have potential applications in controlling disease-related intracellular protein-protein interactions. Given the large number of cytosolic proteins and complicated interactions that are potentially involved in disease development, discovery of antibodies targeting intracellular proteins requires iterative cycles of expression and assessment of candidate antibodies. Because current cell-based expression methods do not provide sufficient throughput for production and assay of cytosol-penetrating antibodies, we integrated a cell-free protein synthesis system designed to provide optimal conditions for production of functional antibodies with a cytosol-penetration assay. The proposed approach of consolidating cell-free synthesis and cell-based assay will substantially expand the capability of discovering and engineering antibodies that can cross the cell membrane and effectively control protein-mediated cellular functions. Biotechnol. Bioeng. 2016;113: 2107-2112. © 2016 Wiley Periodicals, Inc.


Assuntos
Anticorpos Monoclonais/metabolismo , Citosol/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Engenharia de Proteínas/métodos , Anticorpos Monoclonais/genética , Sistema Livre de Células/metabolismo , Células HeLa , Humanos
10.
J Nanosci Nanotechnol ; 10(10): 6892-5, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21137819

RESUMO

Polyelectrolyte multilayers comprised of poly(allylamine hydrochloride) and poly(acrylic acid) were assembled by layer-by-layer technique for metal nanoparticle syntheses. Using weak polyelectrolytes in LbL process, it is readily available to tune the deposited film properties by simple changing of the dipping solution pH. The PAH/PAA multilayer systems exhibit different surface morphologies and functionalities depending on the assembly conditions. We have studied two distinctive PAH/PAA multilayer films to utilize them for nanoparticle synthesis. The reactive functional groups of the polyelectrolytes within the films were remained after the film deposition or reactivated by a simple pH stimulus, and therefore they were allowed to undergo further chemical reactions to synthesize Pd and Au nanoparticles. Synthesized metal nanoparticles were easily characterized by their optical properties including surface plasmon absorption. These metal nanoparticle-embedded multilayers may have great potentials for biomolecule sensing or catalytically active coatings.


Assuntos
Resinas Acrílicas/química , Nanopartículas Metálicas/química , Nanocompostos/ultraestrutura , Poliaminas/química , Técnicas Biossensoriais , Eletrólitos , Ouro/química , Microscopia de Força Atômica , Nanocompostos/química , Paládio/química , Porosidade , Espectrofotometria Ultravioleta , Ressonância de Plasmônio de Superfície
11.
Macromol Rapid Commun ; 30(13): 1109-15, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21706574

RESUMO

We have created a new functional biosensor coating composed of polyelectrolyte multilayers containing gold nanoparticles. This gold-hybridized polyelectrolyte multilayer film possesses a stable nanoporous structure under physiological conditions. Antibody molecules were successfully conjugated onto the gold nanoparticles within the film. This functional coating successfully extinguished false signals from non-specific binding of proteins and cells and also provided highly enhanced detection sensitivity. Furthermore, the drastic differences in protein and cellular adhesion properties between a chip coated with the nanoporous PEM film and a bare chip demonstrate that morphological control of biological interactions on chip surfaces is possible.

12.
Langmuir ; 20(14): 5978-81, 2004 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-16459619

RESUMO

Bioinert polyelectrolyte multilayers comprised of poly(acrylic acid) and polyacrylamide were deposited on colloidal particles (1.7 microm in diameter) at low pH conditions by layer-by-layer assembly using hydrogen-bonding interactions. The multilayer films were coated uniformly on the colloidal particles without causing any flocculation of the colloids, and the deposited films were subsequently cross-linked by a single treatment of a carbodiimide aqueous solution. The lightly cross-linked multilayer films show excellent stability at physiological conditions (pH 7.4, phosphate-buffered saline), whereas untreated multilayer films dissolved. The multilayer-coated surfaces, both on flat substrates and on colloidal particles, exhibit excellent resistance toward mammalian cell adhesion. With this new solution-based cross-linking method, bioinert H-bonded multilayer coatings offer potential for biomedical applications.


Assuntos
Resinas Acrílicas/química , Materiais Revestidos Biocompatíveis/química , Eletrólitos/química , Membranas Artificiais , Coloides/química , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Soluções/química , Água/química
13.
Langmuir ; 20(4): 1362-8, 2004 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-15803720

RESUMO

A newly discovered class of cell resistant surfaces, specifically engineered polyelectrolyte multilayers, was patterned with varying densities of adhesion ligands to control attachment of mammalian cells and to study the effects of ligand density on cell activity. Cell adhesive patterns were created on cell resistant multilayer films composed of poly(acrylic acid) and polyacrylamide through polymer-on-polymer stamping of poly(allylamine hydrochloride) PAH and subsequent reaction of the amine functional groups with an adhesion ligand containing RGD (Arg-Gly-Asp). These cell patterns demonstrated great promise for long-term applications since they remained stable for over 1 month, unlike ethylene glycol functional surfaces. By changing the stamping conditions of PAH, it was possible to alter the number of available functional groups in the patterned regions, and as a result, control the ligand density. Cell spreading, morphology, and cytoskeletal organization were compared at four different RGD densities. The highest RGD density, approximately 152 000 molecules/microm2, was created by stamping PAH at a pH of 11.0. Lowering the stamping ink pH led to patterns with lower ligand surface densities (83 000 molecules/microm2 for pH 9.0, 53,000 molecules/ microm2 for pH 7.0, and 25 000 molecules/microm2 for pH 3.5). An increasing number of cells attached and spread as the RGD density of the patterns increased. In addition, more cells showed well-defined actin stress fibers and focal adhesions at higher levels of RGD density. Finally, we found that pattern geometry affected cytoskeletal protein organization. Well-formed focal adhesions and cell-spanning stress fibers were only found in cells on wider line patterns (at least 25 microm in width).


Assuntos
Comunicação Celular , Técnicas de Cultura de Células/métodos , Técnicas de Cultura/métodos , Eletrólitos/química , Resinas Acrílicas/química , Animais , Materiais Biocompatíveis , Adesão Celular , Células Cultivadas , Citoesqueleto/metabolismo , Fibroblastos/metabolismo , Adesões Focais , Concentração de Íons de Hidrogênio , Ligantes , Camundongos , Microscopia de Força Atômica , Microscopia de Fluorescência , Microscopia de Contraste de Fase , Modelos Estatísticos , Células NIH 3T3 , Oligopeptídeos/química , Peptídeos/química , Polímeros/química , Fibras de Estresse , Estresse Mecânico , Especificidade por Substrato , Propriedades de Superfície
14.
Biomacromolecules ; 4(4): 987-94, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12857083

RESUMO

Hydrogen-bonded multilayers comprised of polyacrylamide (PAAm) and a weak polyelectrolyte, such as poly(acrylic acid) (PAA) or poly(methacrylic acid) (PMA), were investigated for their surface-cell interactions. The assembled films were lightly cross-linked thermally or photochemically in order to render them stable in a physiological environment. Both PAA/PAAm and PMA/PAAm multilayers were found to exhibit a high resistance to the adhesion (cytophobicity) of mammalian fibroblasts, even with only a single bilayer coating. Protein adsorption to the multilayers, as revealed by surface plasmon resonance measurements, was greatly reduced for fibronectin and serum-containing medium. In situ swelling experiments indicate that the H-bonded multilayers are hydrogellike coatings capable of a high level of swelling in buffered solution. Utilizing the H-bonding nature of these multilayers, we were able to micropattern the films to create more complex cell-resistant/-adhesive surfaces. The long-term stability of the cell-resistant multilayers was found to be exceptionally good even under conditions (pH 7.4, buffered solution) where a high degree of swelling takes place. No degradation of the micropatterned films was observed over a period of a month, during which time the multilayer coatings remained highly resistant to cell-adhesion.


Assuntos
Eletrólitos/química , Eletrólitos/classificação , Resinas Acrílicas/química , Animais , Adesão Celular/efeitos dos fármacos , Eletrólitos/farmacologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Hidrogênio/química , Camundongos , Microquímica , Ácidos Polimetacrílicos/química , Quartzo , Eletricidade Estática , Ressonância de Plasmônio de Superfície , Propriedades de Superfície
15.
Biomacromolecules ; 4(1): 96-106, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12523853

RESUMO

Nanostructured polyelectrolyte multilayer thin films electrostatically assembled alternately from such polymers as poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) were investigated for their in vitro cell interactions. Not surprisingly, NR6WT cells, a highly adhesive murine fibroblast cell line, attached to many different multilayer combinations tested. However, PAH/PAA multilayers constructed at pH deposition conditions of 2.0/2.0 were completely bioinert. Analogous cell interactions were observed with PAH/poly(methacrylic acid) (PAH/PMA), PAH/sulfonated poly(styrene) (PAH/SPS), and poly(diallyldimethylammonium chloride)/SPS (PDAC/SPS) systems, thereby suggesting a general trend in the fibroblasts' response to multilayers. Specifically, highly ionically stitched films attracted cells, whereas weakly ionically cross-linked multilayers, which swell substantially in physiological conditions to present richly hydrated surfaces, resisted fibroblast attachment. Thus, by manipulating the multilayer pH or ionic strength assembly conditions or both, which in turn dictate the molecular architecture of the thin films, one may powerfully direct a single multilayer combination to be either cell adhesive or cell resistant.


Assuntos
Desenho de Fármacos , Eletrólitos/química , Eletrólitos/síntese química , Polímeros/química , Polímeros/síntese química , Resinas Acrílicas , Modelos Moleculares , Conformação Molecular , Ácidos Polimetacrílicos , Espectrofotometria , Propriedades de Superfície
16.
J Am Chem Soc ; 124(10): 2100-1, 2002 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-11878948

RESUMO

Polyelectrolyte multilayers of poly(acrylic acid) (PAA) and polyacrylamide (PAAm) were prepared via hydrogen-bonding interactions. These multilayers as assembled were stable at low pH but dissolved quickly in neutral pH water. We developed methods for stabilizing these multilayers to high pH through cross-linking by heating or UV-irradiation. Thermal treatment of the multilayers, which resulted in a partial imidization between carboxylic acid and amide groups, gave the multilayer good stability at high pH. In addition, we introduced photoreactive groups in the multilayer, which rendered the film insoluble after UV irradiation. Using these selective stabilization approaches, we have succeeded in micropatterning these films by ink-jet printing and photolithography to create subtractive patterns.


Assuntos
Resinas Acrílicas/química , Hidrogênio/química , Filmes Cinematográficos , Alilamina/química , Reagentes de Ligações Cruzadas/química , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...