Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Virulence ; 15(1): 2350892, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38745370

RESUMO

The evasive tactics of Treponema pallidum pose a major challenge in combating and eradicating syphilis. Natural killer (NK) cells mediate important effector functions in the control of pathogenic infection, preferentially eliminating targets with low or no expression of major histocompatibility complex (MHC) class I. To clarify T. pallidum's mechanisms in evading NK-mediated immunosurveillance, experiments were performed to explore the cross-talk relations among T. pallidum, NK cells, and platelets. T. pallidum adhered to, activated, and promoted particle secretion of platelets. After preincubation with T. pallidum, platelets expressed and secreted high levels of MHC class I, subsequently transferring them to the surface of T. pallidum, potentially inducing an immune phenotype characterized by the "pseudo-expression" of MHC class I on the surface of T. pallidum (hereafter referred to a "pseudo-expression" of MHC class I). The polA mRNA assay showed that platelet-preincubated T. pallidum group exhibited a significantly higher copy number of polA transcript than the T. pallidum group. The survival rate of T. pallidum mirrored that of polA mRNA, indicating that preincubation of T. pallidum with platelets attenuated NK cell lethality. Platelets pseudo-expressed the MHC class I ligand on the T. pallidum surface, facilitating binding to killer cell immunoglobulin-like receptors with two immunoglobulin domains and long cytoplasmic tail 3 (KIR2DL3) on NK cells and initiating dephosphorylation of Vav1 and phosphorylation of Crk, ultimately attenuating NK cell lethality. Our findings elucidate the mechanism by which platelets transfer MHC class I to the T. pallidum surface to evade NK cell immune clearance.


Assuntos
Plaquetas , Antígenos de Histocompatibilidade Classe I , Células Matadoras Naturais , Sífilis , Treponema pallidum , Células Matadoras Naturais/imunologia , Treponema pallidum/imunologia , Treponema pallidum/genética , Humanos , Plaquetas/imunologia , Plaquetas/microbiologia , Antígenos de Histocompatibilidade Classe I/imunologia , Sífilis/imunologia , Sífilis/microbiologia , Evasão da Resposta Imune
2.
ACS Infect Dis ; 9(12): 2548-2559, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-37983134

RESUMO

M2 macrophages were related to local immune homeostasis and maternal-fetal tolerance in normal pregnancy; whether M2 macrophages can respond to the stimulation of Treponema pallidum to mediate placental vascular inflammation injury is unclear. In this study, M2 macrophages were constructed to investigate the impact of T. pallidum on macrophage polarization and the underlying signaling pathway involved in this process, and the influence of macrophage polarization triggered by T. pallidum on the apoptosis and angiogenesis of human umbilical vein endothelial cells (HUVEC) was also explored. The results showed that M2 macrophage markers (CD206 and PPARγ) and anti-inflammatory factors (TGFß and CCL18) were decreased, while M1 macrophage marker CD80 and inflammatory cytokines (IL1ß and TNFα) were increased when M2 macrophages were treated with T. pallidum, indicating that T. pallidum promoted the polarization of M2 subtype macrophages to the M1 subtype. Moreover, T. pallidum-induced M1 macrophage polarization was found to be significantly correlated with the activation of Janus kinase 1 (JAK1) and signal transducer and activator of transcription 1 (STAT1). In addition, T. pallidum-induced M1 macrophages were found to promote apoptosis and inhibit the angiogenesis of HUVECs, and JAK1 or STAT1 inhibitors could weaken the apoptosis rate and promote the angiogenesis of HUVECs. These findings revealed that T. pallidum promoted the polarization of M2 macrophages to the M1 subtype through the JAK1-STAT1 signal pathway mediating the apoptosis and inhibiting angiogenesis of HUVECs, which may provide a possible mechanism for T. pallidum-induced adverse pregnancy outcomes.


Assuntos
Angiogênese , Treponema pallidum , Humanos , Feminino , Gravidez , Células Endoteliais da Veia Umbilical Humana , Placenta , Macrófagos/metabolismo , Apoptose
3.
4.
Biomed Pharmacother ; 167: 115628, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37804809

RESUMO

The systemic immune response, including B- and T-cell reactions, plays a corresponding role in syphilis infections. The TP0136 protein is a target of the immune response in infected hosts and may mediate the immune response. Here, we developed a method that combining reverse vaccine approach with Pepscan/T-cell proliferation to screen and identify three B-cell and two T-cell epitopes of TP0136, and explore the role of the B- and T-cell epitopes in immunized-infected animals. The results showed that immunized with B-cell epitopes not only had no protective effect but also aggravated the syphilitic lesion development. While immunized with T-cell epitopes of TP0136 could induce a strong Th1-cellular immunity response, which could attenuate syphilitic lesion development to a certain extent. The variation in exacerbation or attenuation of skin lesions, induced by distinct B- and T-cell epitopes of Tp0136, within the host's defense against syphilis warrants in-depth exploration.


Assuntos
Sífilis , Treponema pallidum , Animais , Coelhos , Sífilis/prevenção & controle , Epitopos de Linfócito T , Imunidade Celular , Linfócitos T
5.
NPJ Vaccines ; 8(1): 146, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773233

RESUMO

Syphilis has resurged in many countries, which has called attention to vaccine development. Based on the immunization-based rabbit model of infection with the Nichols strain, this study explored the protective immune response of a controversial syphilis vaccine candidate, TprK, and found that immunization with full-length rTprK was effective in attenuating lesion development and accelerating lesion resolution, which could reduce the probability of the pathogen spreading to distant tissue sites to prevent the progression of the disease to some extent. Furthermore, the results revealed that immunization with rTprK not only rapidly induced a strong Th1-like cellular response but also elicited a humoral immune response to produce opsonic antibodies to enhance macrophage-mediated opsonophagocytosis. Although complete protection against infection was not achieved, the study provided a comprehensive and in-depth exploration of the immunogenicity of TprK and highlighted the importance of TprK as a promising syphilis vaccine component.

6.
EClinicalMedicine ; 62: 102080, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37533423

RESUMO

Background: The ability to accurately identify the absolute risk of neurosyphilis diagnosis for patients with syphilis would allow preventative and therapeutic interventions to be delivered to patients at high-risk, sparing patients at low-risk from unnecessary care. We aimed to develop, validate, and evaluate the clinical utility of simplified clinical diagnostic models for neurosyphilis diagnosis in HIV-negative patients with syphilis. Methods: We searched PubMed, China National Knowledge Infrastructure and UpToDate for publications about neurosyphilis diagnostic guidelines in English or Chinese from database inception until March 15, 2023. We developed and validated machine learning models with a uniform set of predictors based on six authoritative diagnostic guidelines across four continents to predict neurosyphilis using routinely collected data from real-world clinical practice in China and the United States (through the Dermatology Hospital of Southern Medical University in Guangzhou [659 recruited between August 2012 and March 2022, treated as Development cohort], the Beijing Youan Hospital of Capital Medical University in Beijng [480 recruited between December 2013 and April 2021, treated as External cohort 1], the Zhongshan Hospital of Xiamen University in Xiamen [493 recruited between November 2005 and November 2021, treated as External cohort 2] from China, and University of Washington School of Medicine in Seattle [16 recruited between September 2002 and April 2014, treated as External cohort 3] from United States). We included all these patients with syphilis into our analysis, and no patients were further excluded. We trained eXtreme gradient boosting (XGBoost) models to predict the diagnostic outcome of neurosyphilis according to each diagnostic guideline in two scenarios, respectively. Model performance was measured through both internal and external validation in terms of discrimination and calibration, and clinical utility was evaluated using decision curve analysis. Findings: The final simplified clinical diagnostic models included neurological symptoms, cerebrospinal fluid (CSF) protein, CSF white blood cell, and CSF venereal disease research laboratory test/rapid plasma reagin. The models showed good calibration with rescaled Brier score of 0.99 (95% CI 0.98-1.00) and excellent discrimination (the minimum value of area under the receiver operating characteristic curve, 0.84; 95% CI 0.81-0.88) when externally validated. Decision curve analysis demonstrated that the models were useful across a range of neurosyphilis probability thresholds between 0.33 and 0.66 compared to the alternatives of managing all patients with syphilis as if they do or do not have neurosyphilis. Interpretation: The simplified clinical diagnostic models comprised of readily available data show good performance, are generalisable across clinical settings, and have clinical utility over a broad range of probability thresholds. The models with a uniform set of predictors can simplify the sophisticated clinical diagnosis of neurosyphilis, and guide decisions on delivery of neurosyphilis health-care, ultimately, support accurate diagnosis and necessary treatment. Funding: The Natural Science Foundation of China General Program, Health Appropriate Technology Promotion Project of Guangdong Medical Research Foundation, Department of Science and technology of Guangdong Province Xinjiang Rural Science and Technology(Special Commissioner)Project, Southern Medical University Clinical Research Nursery Garden Project, Beijing Municipal Administration of Hospitals Incubating Program.

7.
Heliyon ; 9(6): e17157, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37484402

RESUMO

Background: The cerebrospinal fluid (CSF) venereal disease research laboratory (VDRL) test remains the standard for the laboratory diagnosis of neurosyphilis. The toluidine red unheated serum test (TRUST) is an alternative to the VDRL test as a serological test for syphilis, but it lacks guidelines for its use in CSF for neurosyphilis diagnosis. Methods: A total of 210 suspected neurosyphilis patients were included, consisting of 124 neurosyphilis patients and 86 syphilis/non-neurosyphilis patients. The TRUST was modified into the CSF-TRUST-10 test with 10 µL of antigen by referring to the CSF-VDRL test, and the CSF-TRUST-17 test with 17 µL of antigen by referring to its procedures in serum. The diagnostic performance of the CSF-TRUST-10 and CSF-TRUST-17 tests and the concordance between them and the CSF-VDRL test were evaluated. Results: The diagnostic performance of the CSF-TRUST-10 and CSF-TRUST-17 tests for diagnosing neurosyphilis were comparable to the CSF-VDRL test, as well as the positive rate. The agreement rate was 98.7% between the qualitative CSF-TRUST-10 and CSF-VDRL tests. A total of 91.4% of the quantitative CSF-TRUST-10 results were consistent with the CSF-VDRL test, and the discordant results were no more than two titres. The agreement rate was 98.1% between the qualitative CSF-TRUST-17 and CSF-VDRL tests and 87.6% between the quantitative CSF-TRUST-17 and CSF-VDRL tests. Conclusions: The CSF-TRUST with 10 µL of antigen could be an alternative for the CSF-VDRL test for neurosyphilis diagnosis. Our results provide a basis for using the TRUST to guide the diagnosis of neurosyphilis.

8.
J Cell Mol Med ; 27(20): 3065-3074, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37487001

RESUMO

The migratory ability of microglia facilitates their rapid transport to a site of injury to kill and remove pathogens. However, the effect of Treponema pallidum membrane proteins on microglia migration remains unclear. The effect of Tp47 on the migration ability and autophagy and related mechanisms were investigated using the human microglial clone 3 cell line. Tp47 inhibited microglia migration, the expression of autophagy-associated protein P62 decreased, the expression of Beclin-1 and LC3-II/LC3-I increased, and the autophagic flux increased in this process. Furthermore, autophagy was significantly inhibited, and microglial cell migration was significantly increased after neutralisation with an anti-Tp47 antibody. In addition, Tp47 significantly inhibited the expression of p-PI3K, p-AKT, and p-mTOR proteins, and the sequential activation of steps in the PI3K/AKT/mTOR pathways effectively prevented Tp47-induced autophagy. Moreover, Tp47 significantly inhibited the expression of p-FOXO1 protein and promoted FOXO1 nuclear translocation. Inhibition of FOXO1 effectively suppressed Tp47-induced activation of autophagy and inhibition of migration. Treponema pallidum membrane protein Tp47-induced autophagy and inhibited cell migration in HMC3 Cells via the PI3K/AKT/FOXO1 pathway. These data will contribute to understanding the mechanism by which T. pallidum escapes immune killing and clearance after invasion into the central nervous system.

9.
Biochim Biophys Acta Mol Cell Res ; 1870(7): 119540, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37468070

RESUMO

Interleukin-6 (IL-6) is a multi-effective cytokine involved in multiple immune responses. Whether fibroblasts also turn out to be a cytokine IL-6 factory during interaction with Treponema pallidum is not yet understood. To explore whether fibroblasts participate in inflammation due to syphilis, a series of experiments were performed to explore the role of T. pallidum lipoprotein Tp47 in IL-6 production in human dermal fibroblasts. The Toll-like receptor 2 (TLR2) and participating signalling pathways in this process were also evaluated. The results showed that the expressions of IL-6 and the protein levels of TLR2 in fibroblasts were upregulated after stimulation with Tp47, and this effect was impeded by the TLR2 inhibitor C29. In addition, Tp47 promoted the phosphorylation of p38, PI3K/Akt, and nuclear factor-kappaB (NF-κB), and the translocation of NF-κB in fibroblasts. Moreover, p38, PI3K, and NF-κB inhibitors significantly reduced IL-6 production in fibroblasts stimulated with Tp47. Furthermore, the TLR2 inhibitor C29 inhibited the phosphorylation of p38, Akt, and NF-κB, and the translocation of NF-κB in fibroblasts. In conclusion, our results showed that Tp47 enhanced IL-6 secretion in human dermal fibroblasts through TLR2 via p38, PI3K/Akt, and NF-κB signalling pathways. These findings contribute to our understanding of syphilis inflammation.


Assuntos
NF-kappa B , Sífilis , Humanos , NF-kappa B/metabolismo , Interleucina-6/metabolismo , Treponema pallidum/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Sífilis/metabolismo , Citocinas/metabolismo , Inflamação , Proteínas Recombinantes/metabolismo , Fibroblastos/metabolismo
10.
Microbiol Spectr ; 11(4): e0106723, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37347187

RESUMO

Heterogeneous tprK sequences have been hypothesized to be an important factor for persistent infection of Treponema pallidum subsp. pallidum (T. pallidum) in humans. Previous research has only explored tprK diversity using a rabbit model infected with almost clonal isolates, which is inconsistent with the fact that infected human isolates contain multiple heterogeneous tprK sequences. Here, we used the T. pallidum Amoy strain with heterogeneous tprK sequences to establish a rabbit infection model and explore longitudinal variations in the tprK gene under normal infection, immunosuppression treatment, and benzathine penicillin G (BPG) treatment using next-generation sequencing. The diversity of the tprK gene was high in all three groups but was highest in the control group and lowest in the BPG group. Interestingly, the overall diversity of tprK in all three groups decreased during infection, exhibiting a "more to less" trend, indicating that survival selection may be an important factor affecting tprK variation in the later infection stage. BPG treatment appeared to reduce the diversity of tprK but increased the frequency of predominant sequence changes, which might facilitate the escape of T. pallidum from the host immune clearance. Furthermore, the original predominant V region sequence did not disappear with disease progression but retained a relatively high proportion within the population, suggesting a new direction for tprK-related vaccine research. This study provides insights into longitudinal variations within the highly heterogeneous tprK gene sequences of T. pallidum and will contribute to further exploration of the pathogenesis of syphilis. IMPORTANCE The tprK variations are an important factor in persistent T. pallidum infection. A nearly clonal isolate has been used previously to investigate the mechanism of tprK gene variations; however, clinical T. pallidum isolates in infected humans exhibit multiple heterogeneous tprK sequences. Here, we use next-generation sequencing to explore longitudinal variations in the tprK gene under normal infection and immunosuppression and benzathine penicillin G treatment in a rabbit model infected with the Amoy strain with heterogeneous tprK sequences. The overall diversity of tprK in all three groups was high and decreased during infection, exhibiting a "more to less" trend. Benzathine penicillin G treatment reduced the diversity of tprK but increased the frequency of predominant sequence changes. Moreover, the original predominant V region sequence did not disappear as the disease progressed but remained at a relatively high proportion within the population. The research results give us a new understanding about tprK variation.


Assuntos
Sífilis , Treponema pallidum , Animais , Coelhos , Humanos , Treponema pallidum/genética , Penicilina G Benzatina , Treponema/genética , Infecção Persistente
11.
Microbiol Spectr ; 11(3): e0493122, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37036342

RESUMO

TprK antigenic variation is acknowledged as an important strategy developed by Treponema pallidum to achieve immune evasion. Previous studies applied short-read sequencing to explore tprK gene sequence diversity in clinical samples; however, due to the limitations of short-read sequencing, it was difficult to determine the linkage between the seven V regions, and crucial information about full-length tprK variants was lost. Although two recent studies explored complete tprK gene profiles in natural human syphilis infection, there are still too few profiled full-length tprK variants among clinical T. pallidum isolates to fully understand the characteristics of TprK coding diversity. Here, Pacific Biosciences (PacBio) long-read sequencing was applied to examine the diversity of full-length tprK variants in 21 clinical T. pallidum isolates from 11 patients with primary syphilis and 10 patients with secondary syphilis. A total of 398 high-confidence full-length sequences, which presented remarkable sequence heterogeneity, were found. However, these full-length tprK variants exhibited limited variation in length and GC content, showing 24 length types and average GC content of 51.5 ± 0.42% and 51.6 ± 0.26% for primary and secondary syphilis samples, respectively. Additionally, the combined patterns of mutated V regions generating new tprK variants were obviously different in primary and secondary syphilis samples. The diversity of tprK gene sequences in primary syphilis samples may represent the underlying variability of the bacterium; conversely, the variability of the tprK gene in secondary syphilis samples may more accurately reflect how T. pallidum escapes host immune clearance. These data highlight the tprK gene as an important coding gene that shows conflicting genetic characteristics but underlies the persistence of spirochete infection. IMPORTANCE The resurgence of syphilis in both low- and high-income countries has attracted attention, and persistent infection by the pathogen has long been a research focus. The tprK gene, encoding the hypervariable outer membrane protein, is thought to be responsible for pathogen immune evasion and persistent infection. Here, PacBio long-read sequencing was applied to examine the diversity of full-length tprK variants in 21 clinical T. pallidum isolates from 11 patients with primary syphilis and 10 patients with secondary syphilis. The results showed that the sequences of the tprK gene were remarkably heterogeneous; however, the sequences presented limited variation in length and GC content. The investigation of the combined patterns of the V regions allowed us to gain insight into the features of the tprK gene generating new variants at different clinical stages. The findings of this study will be helpful for further exploration of the pathogenesis of syphilis.


Assuntos
Sífilis , Humanos , Sífilis/microbiologia , Infecção Persistente , Treponema pallidum/genética
12.
J Med Virol ; 95(4): e28703, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36965144

RESUMO

Given the prevalence of low-pathogenic but highly infectious Omicron variants, a cohort study was conducted to assess the response and duration of novel coronavirus-inactivated vaccine-induced antibodies 1 year after the third dose (Day 641). Blood samples were collected and anti-spike neutralizing antibodies (neutralizing antibody), total antibodies against the receptor-binding domain of the spike protein (total antibody), and immunoglobulin G antibodies against the spike protein (IgG antibody) were determined. Antibody kinetics and attenuation were evaluated. The results showed that the levels of neutralizing, total, and IgG antibodies on Day 641 were 98.05 IU/mL, 152.8 AU/mL, and 7.68 S/CO, respectively. Levels of anti-SARS-CoV-2 antibodies were higher in the younger subgroup than in the older subgroup at several time points after the second and third doses. The seropositive rate of neutralizing antibodies providing protection from infection or severe infection was 46.87% and 87.5%, and the seropositive rates of total antibody and IgG antibody were maintained at 100% and 90.63%, respectively. The half-lives of neutralizing, total, and IgG antibodies were 186.89, 363.04, and 417.50 days, respectively. Collectively, anti-SARS-CoV-2 antibodies may provide a certain degree of protection from infection 1 year after the third dose and high protection from severe infection.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Estudos Prospectivos , Estudos de Coortes , Estudos Longitudinais , COVID-19/prevenção & controle , SARS-CoV-2 , Anticorpos Antivirais , Anticorpos Neutralizantes , Imunoglobulina G
13.
Clin Infect Dis ; 77(3): 472-479, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-36929815

RESUMO

BACKGROUND: Laboratory tests to diagnose neurosyphilis using cerebrospinal fluid (CSF) are currently disadvantageous as a lumbar puncture is required, which may result in patients with neurosyphilis missing an opportunity for early diagnosis. Thus, blood biomarker candidates that are more convenient and minimally invasive to collect for diagnosing neurosyphilis is urgently needed. METHODS: This observational study aimed to analyze serum ubiquitin C-terminal hydrolase-L1 (UCH-L1), glial fibrillary acidic protein (GFAP), and neurofilament light chain (NF-L) levels in 153 patients without human immunodeficiency virus (HIV) and to evaluate their diagnostic performance in neurosyphilis compared with CSF. RESULTS: Serum UCH-L1, GFAP, and NF-L levels were significantly higher in patients with neurosyphilis compared with patients with uncomplicated syphilis or non-syphilis. For the diagnosis of neurosyphilis, serum UCH-L1, GFAP, and NF-L revealed sensitivities of 90.20%, 80.40%, and 88.24%, and specificities of 92.16%, 78.43%, and 80.39%, respectively, at cutoff levels of 814.50 pg/mL, 442.70 pg/mL, and 45.19 pg/mL, respectively. In patients with syphilis, serum UCH-L1, GFAP, and NF-L levels correlated strongly or moderately with those in the CSF, with similar or better diagnostic performance than those in the CSF. The testing algorithms' sensitivity and specificity increased to 98.04% and 96.08%, respectively, when subjected to parallel and combination testing, respectively. CONCLUSIONS: To avoid lumbar puncture, each serum UCH-L1, GFAP, and NF-L is a good entry point and biomarker candidate for the diagnosis of neurosyphilis among patients without HIV. These proteins used in concerto can further improve the diagnostic sensitivity and specificity.


Assuntos
Infecções por HIV , Neurossífilis , Humanos , Ubiquitina Tiolesterase , Proteína Glial Fibrilar Ácida , Punção Espinal , HIV , Filamentos Intermediários , Biomarcadores , Neurossífilis/diagnóstico , Infecções por HIV/complicações
14.
Vaccines (Basel) ; 11(2)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36851250

RESUMO

To identify false-positive SARS-CoV-2 test results caused by novel coronavirus inactivated vaccine contamination, a novel RT-qPCR targeting the ORF1ab and N genes of SARS-CoV-2 and Vero gene was developed. The amplification efficiency, precision, and lower limit of detection (LLOD) of the RT-qPCR assay were determined. A total of 346 clinical samples and 132 environmental samples were assessed, and the diagnostic performance was evaluated. The results showed that the amplification efficiency of the ORF1ab, N, and Vero genes was 95%, 97%, and 93%, respectively. The coefficients of variation of Ct values at a concentration of 3 × 104 copies/mL were lower than 5%. The LLOD for the ORF1ab, N, and Vero genes reached 8.0, 3.3, and 8.2 copies/reaction, respectively. For the 346 clinical samples, our RT-qPCR assay identified SARS-CoV-2-positive and SARS-CoV-2-negative samples with a sensitivity of 100.00% and a specificity of 99.30% and novel coronavirus inactivated vaccine-contaminated samples with a sensitivity of 100% and a specificity of 100%. For the environmental samples, our RT-qPCR assay identified novel coronavirus inactivated vaccine-contaminated samples with a sensitivity of 88.06% and a specificity of 95.38%. In conclusion, the RT-qPCR assay we established can be used to diagnose COVID-19 and, to a certain extent, false-positive results due to vaccine contamination.

15.
Vaccines (Basel) ; 11(1)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36680032

RESUMO

To obtain more insight into IgM in anti-SARS-CoV-2 immunity a prospective cohort study was carried out in 32 volunteers to longitudinally profile the kinetics of the anti-SARS-CoV-2 IgM response induced by administration of a three-dose inactivated SARS-CoV-2 vaccine regimen at 19 serial time points over 456 days. The first and second doses were considered primary immunization, while the third dose was considered secondary immunization. IgM antibodies showed a low secondary response that was different from the other three antibodies (neutralizing, total, and IgG antibodies). There were 31.25% (10/32) (95% CI, 14.30-48.20%) of participants who never achieved a positive IgM antibody conversion over 456 days after vaccination. The seropositivity rate of IgM antibodies was 68.75% (22/32) (95% CI, 51.80-85.70%) after primary immunization. Unexpectedly, after secondary immunization the seropositivity response rate was only 9.38% (3/32) (95% CI, 1.30-20.10%), which was much lower than that after primary immunization (p = 0.000). Spearman's correlation analysis indicated a poor correlation of IgM antibodies with the other three antibodies. IgM response in vaccinees was completely different from the response patterns of neutralizing, total, and IgG antibodies following both the primary immunization and the secondary immunization and was suppressed by pre-existing immunity induced by primary immunization.

16.
Int J Infect Dis ; 127: 36-44, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36400375

RESUMO

OBJECTIVES: To evaluate the possibility of using cerebrospinal fluid (CSF) ubiquitin C-terminal hydrolase L1 (UCH-L1), glial fibrillary acidic protein (GFAP), and neurofilament light protein (NF-L) for the diagnosis of neurosyphilis (NS). METHODS: A cross-sectional study of 576 subjects was conducted at Zhongshan Hospital from January 2021 to August 2022 to evaluate the diagnostic accuracy of CSF UCH-L1, GFAP, and NF-L for NS and analyze their correlations with CSF rapid plasma reagin (RPR), white blood cells (WBCs), and protein. RESULTS: Patients with NS had higher CSF UCH-L1, GFAP, and NF-L levels than patients with syphilis/non-NS and nonsyphilis. Using a cut-off point of 652.25 pg/ml, 548.89 pg/ml, and 48.38 pg/ml, CSF UCH-L1, GFAP, and NF-L had a sensitivity of 85.11%, 76.60%, and 82.98%, with a specificity of 92.22%, 85.56%, and 91.11%, respectively, for NS diagnosis. Moreover, parallel and serial testing algorithms improved their sensitivity and specificity to 93.62% and 98.89%, respectively. Interestingly, levels between patients with NS who are CSF RPR-positive and -negative did not differ and showed a weak or moderate correlation with WBC and CSF protein in patients with syphilis. CONCLUSION: CSF UCH-L1, GFAP, and NF-L can be used as novel markers for the diagnosis of NS, independent of CSF RPR, WBC, and proteins.


Assuntos
Infecções por HIV , Neurossífilis , Sífilis , Humanos , Ubiquitina Tiolesterase , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral , Biomarcadores , Proteínas de Neurofilamentos , Proteína Glial Fibrilar Ácida , Filamentos Intermediários , Estudos Transversais , Neurossífilis/diagnóstico , Infecções por HIV/diagnóstico
17.
J Eur Acad Dermatol Venereol ; 37(3): 558-572, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36373343

RESUMO

BACKGROUND: Pathological angiogenesis is an important manifestation of syphilis, but the underlying mechanism of Treponema pallidum subspecies pallidum (T. pallidum)-induced angiogenesis is poorly understood. OBJECTIVES: The objective of this study is to investigate the role and related mechanism of the T. pallidum membrane protein Tp47 in angiogenesis. METHODS: The proangiogenic activity of recombinant T. pallidum membrane protein Tp47 in human umbilical vein endothelial cells (HUVECs) was assessed by tube formation assay, three-dimensional angiogenesis analysis and experiments with a zebrafish embryo model. The effects of mitochondrial ROS and NADPH oxidase on intracellular ROS induced by Tp47 were further investigated. Furthermore, the levels of autophagy-related proteins and autophagic flux were measured. Finally, the role of ROS-induced autophagy in angiogenesis was studied. RESULTS: Tp47 promoted tubule formation and the formation of angiogenic sprouts in vitro. In addition, a significant increase in the number of subintestinal vessel branch points in zebrafish injected with Tp47 was observed using a zebrafish embryo model. Tp47 also significantly increased intracellular ROS levels in a dose-dependent manner. Tp47-induced tube formation and angiogenic sprout formation were effectively prevented by the ROS inhibitor NAC. In addition, Tp47 enhanced the production of mitochondrial ROS and expression of the NADPH oxidase-related proteins Nox2 and Nox4. The production of mitochondrial ROS and intracellular ROS was reduced by the NADPH oxidase inhibitors DPI and apocynin. Furthermore, Tp47 significantly increased expression of the autophagy-related proteins P62 and Beclin 1 and the LC3-II/LC3-I ratio and promoted an increase in autophagic flux, which could be effectively rescued by coincubation with the ROS inhibitor NAC. Further intervention with the autophagy inhibitor BafA1 significantly inhibited tube formation and angiogenic sprout formation. CONCLUSIONS: Tp47-induced NADPH oxidase enhanced intracellular ROS production via mitochondrial ROS and promoted angiogenesis through autophagy mediated by ROS. These findings may contribute to our understanding of pathological angiogenesis in syphilis.


Assuntos
Proteínas de Membrana , Sífilis , Treponema pallidum , Animais , Humanos , Autofagia , Proteínas Relacionadas à Autofagia/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Neovascularização Patológica , Espécies Reativas de Oxigênio/metabolismo , Sífilis/microbiologia , Treponema pallidum/fisiologia , Peixe-Zebra
19.
Heliyon ; 8(12): e12065, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36561703

RESUMO

The invasive capability of Treponema. pallidum is central to its infection process. Matrix metalloproteinases (MMPs), which are specifically inhibited by the tissue inhibitors of metalloproteinases (TIMPs), play a pivotal role in promoting pathogenic invasion by destroying tissue barriers within the body. This study aimed to explore the effect of T. pallidum protein Tp0136 on the balance of MMPs/TIMPs in human dermal vascular smooth muscle cells (HDVSMCs) and the related underlying mechanisms. A number of in vitro studies were conducted to access the impact of recombinant Tp0136 protein on the balance of MMPs/TIMPs in HDVSMCs. The involvement of the PI3K, MAPK, and NF-κB signaling pathways in this process was also investigated. Tp0136 induced the mRNA and protein expressions of MMP1 in HDVSMCs in a concentration-dependent way. In addition, MMP1/TIMP1 and MMP1/TIMP2 ratios were also increased. Furthermore, the study demonstrated that treatment of HDVSMCs with Tp0136 activated the PI3K, MAPK, and NF-κB signaling pathways. Inhibition of PI3K, JNK, P38, and NF-κB, suppressed MMP1 expression and reduced the induction of MMP1/TIMP1 and MMP1/TIMP2 ratios by Tp0136. These findings demonstrate that Tp0136 enhanced the expression of MMP1 involving the PI3K, MAPK, and NF-κB signaling pathways in HDVSMCs, and thus generated the unbalance of MMPs/TIMP, which could contribute to the early spread of T. pallidum and pathogenesis of syphilis.

20.
J Infect Public Health ; 15(12): 1494-1496, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36413872

RESUMO

To evaluate the application of cycle threshold (Ct) values of coronavirus disease 2019 (COVID-19) patients in predicting epidemic dynamics and monitoring surface contamination. The Ct value of reverse transcriptase-polymerase chain reaction for SARS­CoV-2 from COVID-19 patients inbound overseas in Xiamen, China was collected from October 2020 to December 2021, and the correlation of patients' Ct values with epidemic dynamics and surface contamination was evaluated. The results showed that there was an extreme inverse correlation of positivity rate in the current calendar month (ORF1ab, r = -0.692, P = 0.004; N,r = -0.629, P = 0.012) and the following calendar month (ORF1ab,r = -0.801, P = 0.001; N,r = -0.620, P = 0.018) with the median Ct values. Ct value showed better performance for monitoring surface contamination, with the area under the curve value 0.808(95 %CI: 0.748-0.869) for ORF1ab and 0.807(95 %CI:0.746-0.868) for the N gene. The patients' ORF1ab Ct value< 29.09 or N Ct value< 28.03 were 11.25 times and 10.48 times more likely to result in surface contamination than those with ORF1ab Ct value ≥ 29.09 or N Ct value≥ 28.03 (OR:11.25,95 % CI: 5.52-22.35; OR:10.48,95 % CI:5.29-20.70). Ct values were associated with the positivity rate in the current or following calendar month and predicted the epidemic dynamics. The Ct values can be used as a predictor for monitoring surface contamination to develop public health responses to COVID-19.


Assuntos
COVID-19 , Epidemias , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saúde Pública
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...