Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 178: 26-34, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38377766

RESUMO

Municipal sludge contains abundant amounts of carbon, with contents ranging from 14 % to 38 %. The various carbon-containing group compounds can be converted into beneficial products, but pollutants and greenhouse gases are also released through the municipal sludge pyrolysis process. Ascertaining the pathways by which carbon-containing group compounds is converted and transformed is crucial for addressing pollution concerns and promoting recycling. This study explored the transformation pathways of carbon-containing group compounds during the pyrolysis process of municipal sludge. The results showed that the three major carbon-containing group compounds including protein (61 %), cellulose (9 %), and hemicellulose (7 %), had significantly different pyrolysis temperature of 600 °C, 400 °C and 300 °C. In terms of gas pollution, most carbon was fully pyrolyzed into CO2. While the temperature raised up to 500 °C, a part of the CO2 converted into CO. Meanwhile, the various carbon-containing compounds exhibited distinct effects on gas production, which CH4 was produced more with cellulose and protein presenting in the sludge. When temperature increased to 700 °C, the 60 % of the carbon-containing group compounds were transformed into liquid and solid. The pyrolysis liquid in the low-temperature stage (30-300 °C) contained a relatively high aliphatics content and lower organooxygen species (OOSs) content (at 200 °C), suggesting a potential for resource utilization. The yield of CO in the gas rapidly increased as the temperature increased in the high-temperature stage (500-700 °C). The insights from this study hold practical implications for enhancing municipal sludge pyrolysis efficiency, reducing pollution, and facilitating more sustainable and resource-efficient practices.


Assuntos
Pirólise , Esgotos , Dióxido de Carbono , Compostos Orgânicos , Carbono , Celulose
2.
Environ Sci Pollut Res Int ; 31(13): 20651-20664, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383930

RESUMO

Traditional pyrolysis biochar has been widely employed to treat dye wastewater. However, there are some problems in the pyrolysis process, such as the generation of harmful gases and the low content of silico-oxygen functional groups to promote adsorption. Straw biochar (Ac-BCbm) was prepared by sulfuric acid co-ball milling method. The adsorption performance and adsorption mechanism of rhodamine B (RhB) under different preparation conditions and factors were investigated. The results showed that the adsorption rate of Ac-BCbm on RhB was up to 94.9%, which was 60.5% and 55.8% higher than that of ball-milling straw (STbm) and biochar prepared by pyrolysis (STBC600), respectively. The Ac-BCbm had better adaptability under different pH and common interfering ions for remove RhB. Characterization and DFT simulation analysis revealed that the sulfuric acid co-ball milling process promoted the formation of Si-OH and Si-O-CH3 oxygen-containing functional groups of Si component in straw, which enhanced the hydrogen bonding interactions and effectively improved the adsorption efficiency. This study investigated a new strategy for biochar preparation by sulfuric acid co-ball milling, which provides an additional development direction for the efficient resource utilization of straw.


Assuntos
Rodaminas , Ácidos Sulfúricos , Poluentes Químicos da Água , Adsorção , Poluentes Químicos da Água/análise , Carvão Vegetal/química , Oxigênio
3.
Environ Res ; 237(Pt 2): 117016, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37657603

RESUMO

Kitchen waste (KW) composting always has trouble with slow humification process and low humification degree. The objective of this study was to develop potentially efficient solutions to improve the humification of KW composting, accelerate the humus synthesis and produce HS with a high polymerization degree. The impact of Bacillus licheniformis inoculation on the transformation of organic components, humus synthesis, and bacterial metabolic pathways in kitchen waste composting, was investigated. Results revealed that microbial inoculation promoted the degradation of organic constituents, especially readily degradable carbohydrates during the heating phase and lignocellulose fractions during the cooling phase. Inoculation facilitated the production and conversion of polyphenol, reducing sugar, and amino acids, leading to an increase of 20% in the content of humic acid compared to the control. High-throughput sequencing and network analysis indicated inoculation enriched the presence of Bacillus, Lactobacillus, and Streptomyces during the heating phase, while suppressing the abundance of Pseudomonas and Oceanobacillus, enhancing positive microbial interactions. PICRUSt2 analysis suggested inoculation enhanced the metabolism of carbohydrates and amino acids, promoting the polyphenol humification pathway and facilitating the formation of humus. These findings provide insights for optimizing the humification process of kitchen waste composting by microbial inoculation.

4.
Bioresour Technol ; 384: 129339, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37343797

RESUMO

The aim of this study was to assess the effect of polylactic acid (PLA) on microbial community composition and core metabolism pathways in food waste (FW) composting. The presence of PLA negatively influenced microbial community richness and decreased respectively the abundance of Bacillus, Halocella and Cellvibrio at mesophilic, thermophilic and mature phases. Analysis of microbial metabolism at the gene level help to understand the mechanism in co-composting with FW and PLA. The expression of core functional genes related to lactide metabolism was stimulated by PLA degradation at thermophilic and mature phases. The sum of absolute abundance of functional genes that involved in first and second carbon oxidation of tricarboxylic acid cycle was decreased due to the existence of PLA. The transformation between 2-Oxoglutarate and Succinyl-CoA were interfered in thermophilic phase, which might result in the lower germination index in PLA group (115%) than that in control (186%).


Assuntos
Compostagem , Eliminação de Resíduos , Alimentos , Poliésteres , Solo
5.
Front Plant Sci ; 14: 1145830, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37255563

RESUMO

Introduction: The production of root exudates with biological nitrification inhibition (BNI) effects is a strategy adopted by ammonium-N (NH4+-N) tolerant plant species that occur in N-limited environments. Most knowledge on BNI comes from plant species that occur in acidic soils. Methods: Here, combining field sampling and laboratory culture, we assessed the BNI-capacity of Leymus chinensis, a dominant grass species in alkaline grasslands in eastern Asia, and explored why L. chinensis has BNI ability. Results and discussion: The results showed that L. chinensis has strong BNI-capacity. At a concentration of 1 mg mL-1, L. chinensis' root exudates inhibited nitrification in soils influenced by Puccinellia tenuiflora by 72.44%, while DCD only inhibited it by 68.29%. The nitrification potential of the soil of L. chinensis community was only 53% of the P. tenuiflora or 41% of the Suaeda salsa community. We also showed that the supply of NH4+-N driven by L. chinensis' BNI can meet its requirements . In addition, NH4+-N can enhance plant adaptation to alkaline stress by regulating pH, and in turn, the uptake of nitrate-N (NO3--N). We further demonstrated that the regulatory function of NH4+-N is greater than its nutritional function in alkaline environment. The results offer novel insights into how L. chinensis adapts to high pH and nutrient deficiency stress by secreting BNIs, and reveal, for the first time, differences in the functional roles of NH4+-N and NO3--N in growth and adaptation under alkaline conditions in a grass species.

6.
Nat Ecol Evol ; 7(1): 113-126, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36631668

RESUMO

While the contribution of biodiversity to supporting multiple ecosystem functions is well established in natural ecosystems, the relationship of the above- and below-ground diversity with ecosystem multifunctionality remains virtually unknown in urban greenspaces. Here we conducted a standardized survey of urban greenspaces from 56 municipalities across six continents, aiming to investigate the relationships of plant and soil biodiversity (diversity of bacteria, fungi, protists and invertebrates, and metagenomics-based functional diversity) with 18 surrogates of ecosystem functions from nine ecosystem services. We found that soil biodiversity across biomes was significantly and positively correlated with multiple dimensions of ecosystem functions, and contributed to key ecosystem services such as microbially driven carbon pools, organic matter decomposition, plant productivity, nutrient cycling, water regulation, plant-soil mutualism, plant pathogen control and antibiotic resistance regulation. Plant diversity only indirectly influenced multifunctionality in urban greenspaces via changes in soil conditions that were associated with soil biodiversity. These findings were maintained after controlling for climate, spatial context, soil properties, vegetation and management practices. This study provides solid evidence that conserving soil biodiversity in urban greenspaces is key to supporting multiple dimensions of ecosystem functioning, which is critical for the sustainability of urban ecosystems and human wellbeing.


Assuntos
Ecossistema , Solo , Humanos , Parques Recreativos , Biodiversidade , Plantas
7.
J Hazard Mater ; 442: 130049, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36179623

RESUMO

Humic acids (HAs) coupled with humic-reducing microorganisms (HRMs) can facilitate contaminants reduction. Molecular-weight (MW) of HA governs the chemical and HRMs behavior. However, MW of HAs with chemical characteristics linking to HRMs in different wastes composting have never been investigated. Results from the HPSEC-UV analysis showed that composting significantly increased weight-average molecular weight (Mw) of HA with a broad range from 675 Da to 27983 Da, and governing heterogeneous chemical characteristics. In proteinaceous composts, MW< 4000 Da of HAs were greatly related to alkyl and carbonyl, while MW> 20000 Da of HAs were presented by oxygen-nitrogenous functional groups, methyl, and alkyl groups. For cellulosic composts, MW< 1500 Da and 4000-10000 Da of HAs were characterized by aliphatic ethers and aromatic groups. MW> 20000 Da of HAs were constructed by phenols, methoxy and nitrogen functional groups. In lignocellulosic composts, MW> 20000 Da of HAs were only characterized by aromatic groups. Furthermore, seven groups of HRMs adapted to the heterogeneous chemical characteristics within HAs ranked by MW were recognized. Consequently, the possible routes that composting properties response to the connections of HRMs-chemical structures-MW of HAs in proteinaceous, cellulosic and lignocellulosic composts were constructed, respectively. Our results can help to develop the fine classification-oriented approach for recycling utilization of organic wastes.


Assuntos
Compostagem , Substâncias Húmicas , Substâncias Húmicas/análise , Peso Molecular , Solo/química , Nitrogênio/análise , Éteres , Oxigênio/análise
8.
Front Microbiol ; 14: 1349747, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38282737

RESUMO

It is known that the dynamics of multiple ecosystem functions (i. e., multifunctionality) are positively associated with microbial diversity and/or biodiversity. However, how the relationship between microbial species affects ecosystem multifunctionality remains unclear, especially in the case of changes in precipitation patterns. To explore the contribution of biodiversity and microbial co-occurrence networks to multifunctionality, we used rainfall shelters to simulate precipitation enhancement in a cold steppe in Northeast China over two consecutive growing seasons. We showed that an increased 50% precipitation profoundly reduced bacterial diversity and multidiversity, while inter-annual differences in precipitation did not shift microbial diversity, plant diversity, or multidiversity. Our analyses also revealed that increased annual precipitation significantly increased ecosystem, soil, nitrogen, and phosphorous cycle multifunctionality. Neither increased precipitation nor inter-annual differences in precipitation had a significant effect on carbon cycle multifunctionality, probably due to the relatively short period (2 years) of our experiment. The co-occurrence network of bacterial and fungal communities was the most dominant factor affecting multifunctionality, the numbers of negative interactions but not positive interactions were linked to multifunctionality. In particular, our results provided evidence that microbial network topological features are crucial for maintaining ecosystem functions in grassland ecosystems, which should be considered in related studies to accurately predict the responses of ecosystem multifunctionality to predicted changes in precipitation patterns.

9.
Waste Manag ; 149: 70-78, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35724610

RESUMO

Kitchen wastes (KW) dramatically increasing with population and economy enhancing, and dry anaerobic fermentation was used to treat it. However, the large amount of biogas residue severely restricted the application of dry anaerobic fermentation, because the high total solid might lead to the system failure. Therefore, it is urgent to find appropriate way to improve the efficiency of dry anaerobic fermentation and reduce the great amount of biogas residue. In this study, a tentative experiment was conducted to investigate the effect of biochar prepared from biogas residue on the performance of dry anaerobic fermentation system. The results showed that almost half of the biogas residue was reduced and converted into biochar. At the presence of biochar, methane yield was 308.6 mL/gVS, which was 10.5% higher than that of control. Compared to the system without biochar, the highest volatile fatty acid (VFA) concentration was 19.3% higher and the percentage of acetate and valerate was 25.3% and 12.8%, while it was 16.3% and 22.0% in the control, suggesting that biochar accelerated the degradation of VFA. Bacteria community diversity increased, Fastidiosipila and Proteiniphilum enriched at the presence of biochar, which might accelerate the hydrolysis and acidification of KW. Hydrogenotrophic methanogens was dominated and syntrophic acetate oxidation was the primary pathway to produce methane. This study developed a new recycle route for improving the efficiency of dry anaerobic fermentation while reducing the large amount of biogas residue generated from dry anaerobic fermentation.


Assuntos
Biocombustíveis , Reatores Biológicos , Anaerobiose , Carvão Vegetal , Ácidos Graxos Voláteis , Fermentação , Metano
10.
Environ Res ; 212(Pt B): 113332, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35483414

RESUMO

Appropriate and effective recycling of food waste (FW) has become increasingly significant with the promotion of garbage classification in China. In this study, a novel and green process was developed to recycle FW to prepare a biodegradable composite liquid mulching film (LMF) through crosslinking with sodium alginate (SA). The solid phase of FW was obtained as the raw material after hydrothermal pretreatment to remove pathogens and salts, and to improve the reactivity of active components at a moderate temperature. The prepared LMF had a hydrophobic surface and compact structure due to the lipid in FW and the acetalization reaction and hydrogen bonds among SA, glutaraldehyde and multi-active components of FW, resulting in enhanced water vapor barrier properties. The minimum water vapor permeability of the prepared LMF reached (8.23 ± 0.05) ✕ 10-12 g cm/(cm2·s·Pa) with 1.82 wt % of plasticizer, 0.74 wt% of crosslinker and a mass ratio of HTP-FW to SA of 3.56:1. The prepared LMF showed good mechanical properties and could maintain its integrity after spraying it on the soil surface for 31 days. In addition, it could effectively prevent the loss of soil moisture and heat, promote the seed germination of Chinese cabbage and achieve 89.14% of weight loss after burying in the soil for 27 days. This study provides a high value-added route to convert the FW to a hydrophobic LMF with superior properties, which addresses not only the problem of food waste but also the pollution of plastic mulching film.


Assuntos
Agricultura , Eliminação de Resíduos , Agricultura/métodos , China , Alimentos , Solo/química , Vapor
11.
Sci Total Environ ; 824: 153772, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35181358

RESUMO

Thermochemical conversion of biomass yields large quantities of tar as a by-product, which is a potential precursor for the synthesis of renewable carbon-based functional materials. In this study, high-performance photo-Fenton catalyst of graphite­carbon-supported iron nanoparticles was synthesized using a self-reduction and solvent-free approach. The results showed that the tar-derived catalyst had unique properties including a defect-rich graphitic structure, high surface area, and an abundant porous structure resulting from the inherent properties of biomass tar. The iron nanoparticles were highly dispersed within the prepared catalysts and were stably anchored on the carbonaceous surface by the FeC bond. The prepared nanocatalyst showed the highest decomposition constant (91.87 × 10-3 min-1) for 20 mM H2O2, and 40 mg/L RhB can be completely degraded within 2 h under catalyst dosage of 1 g/L and H2O2 addition of 20 mM. The degradation mechanism under the photo-Fenton catalyst/H2O2/light system included the heterogeneous Fenton reaction of iron nanoparticles and photo-Fenton reaction of iron oxide, and the efficient RhB degradation was mainly ascribed to the heterogeneous Fenton reaction. In addition, recycling and leaching tests demonstrated that the photo-Fenton catalyst had excellent reusability and stability, where only 7.3% catalytic reactivity was reduced after five cycles. This work provided a green, sustainable, and facile approach for synthesizing photo-Fenton catalysts by value-added utilization of tar wastes.


Assuntos
Grafite , Peróxido de Hidrogênio , Catálise , Grafite/química , Peróxido de Hidrogênio/química , Ferro/química
12.
Sci Total Environ ; 824: 153837, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35181369

RESUMO

Increasing concerns regarding the micropollutant triclosan (TCS) derive from its potential threats to human health and ecological security. Compost addition have been verified to be effective in soil remediation, however, the biodegradation of TCS under compost amendment in soil remain unclear. This study investigated the removal of TCS in soils amended with food waste compost (FS), cow dung compost (CS) and sludge compost (SS), respectively, explored the key TCS-degraders and biological mechanisms of TCS removal. Compost addition significantly enhanced the removal of TCS (p < 0.05) in the order of FS > CS > SS. The dosage of 20% (w/w) was the most efficient one and the ultimate concentrations of TCS were decreased by 76.67%, 67.90% and 56.79% compared with CK, respectively. The abundance of key dominant bacterial genus (7 in FS and 4 in CS) and fungal genus (3 in FS and CS) was stimulated due to the increase of soil nutrient factors (including dissolved organic carbon, DOC; soil organic matter, SOM; ammonium nitrogen, NH4+; nitrate nitrogen, NO3-) and the decrease of pH. A negative correlation between these dominant microbes and TCS concentration indicated their potential effect on TCS degradation. A total of four bacterial biomarkers, namely Saccharomonospora, Aequorivita, Bacillaceae and Fodinicurvataceae (both at family level) were the key TCS-degraders. Structural equation model (SEM) indicated that the improvement of soil nutrient factors in FS and CS promoted TCS biodegradation by improving the activity of bacterial biomarkers, as while, the key dominant microbes showed good tolerance to TCS stress. However, there were no significant biological effects on TCS in SS group. Network analysis further confirmed that it was the coordination of bacterial biomarkers with the dominant microbes that enhanced TCS biodegradation in soil amended with food waste compost and cow dung compost.


Assuntos
Compostagem , Eliminação de Resíduos , Poluentes do Solo , Triclosan , Animais , Bactérias , Biomarcadores , Bovinos , Alimentos , Nitrogênio/análise , Solo/química , Poluentes do Solo/análise , Triclosan/análise
13.
Environ Sci Pollut Res Int ; 29(23): 34174-34185, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35034317

RESUMO

In this study, a new straw-iron composite material (ST@Fe) was synthesized through impregnation and freeze-drying process for persulfate (PS) activation to degrade reactive black 5 (RB5). Scanning electron microscope, Brunauer-Emmett-Teller, Fourier transform infrared spectrometry, and X-ray photoelectron spectroscopy confirmed that straw owns huge pore structure and varieties of organic functional groups, including hydroxyl carboxyl groups, which could effectively adsorb and complex iron ions. The interaction between the active iron particles in ST@Fe and straw generated Fe2+ for PS activation, effectively degrading over 94.80% of RB5 at an initial concentration of 20 ppm in 100 min with a specific degradation capacity of 18.97 min-1 per unit of iron ions. ST@Fe/PS system demonstrated high tolerance in a wide initial pH range, which could gradually attack the RB5 molecular structure and significantly reduce the mineralization of water. Quenching experiments and electron paramagnetic resonance demonstrated the efficient generation of ROS including sulfate radicals, hydroxyl radicals, and singlet oxygen, and confirmed the dominance of sulfate radicals in the degradation process. The continuous degradation capacity and reusability of ST@Fe were also evaluated, which proved that the contaminant could be effectively degraded even after multiple cycles in the simulated textile wastewater, indicating its potential for use in practical remediation. This work provided a new method for the preparation of modified functional materials for the degradation of organic pollutants in textile wastewater and posed a novel strategy for the utilization of waste biomass.


Assuntos
Ferro , Poluentes Químicos da Água , Ferro/química , Naftalenossulfonatos , Oxirredução , Sulfatos/química , Águas Residuárias/análise , Poluentes Químicos da Água/análise
14.
Front Plant Sci ; 13: 1071511, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36726673

RESUMO

In the context of global change, the frequency of precipitation pulses is expected to decrease while nitrogen (N) addition is expected to increase, which will have a crucial effect on soil C cycling processes as well as methane (CH4) fluxes. The interactive effects of precipitation pulses and N addition on ecosystem CH4 fluxes, however, remain largely unknown in grassland. In this study, a series of precipitation pulses (0, 5, 10, 20, and 50 mm) and long-term N addition (0 and 10 g N m-2 yr-1, 10 years) was simulated to investigate their effects on CH4 fluxes in a semi-arid grassland. The results showed that large precipitation pulses (10 mm, 20 mm, and 50 mm) had a negative pulsing effect on CH4 fluxes and relatively decreased the peak CH4 fluxes by 203-362% compared with 0 mm precipitation pulse. The large precipitation pulses significantly inhibited CH4 absorption and decreased the cumulative CH4 fluxes by 68-88%, but small precipitation pulses (5 mm) did not significantly alter it. For the first time, we found that precipitation pulse size increased cumulative CH4 fluxes quadratically in both control and N addition treatments. The increased soil moisture caused by precipitation pulses inhibited CH4 absorption by suppressing CH4 uptake and promoting CH4 release. Nitrogen addition significantly decreased the absorption of CH4 by increasing NH4 +-N content and NO3 --N content and increased the production of CH4 by increasing aboveground biomass, ultimately suppressing CH4 uptake. Surprisingly, precipitation pulses and N addition did not interact to affect CH4 uptake because precipitation pulses and N addition had an offset effect on pH and affected CH4 fluxes through different pathways. In summary, precipitation pulses and N addition were able to suppress the absorption of CH4 from the atmosphere by soil, reducing the CH4 sink capacity of grassland ecosystems.

15.
Chemosphere ; 284: 131302, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34198063

RESUMO

Clogging generally happens to the leachate piping system, which poses a risk to the environment. A low surface energy nanocomposite is prepared to mitigate the cloggings, by adding the fluorinated acrylate polymer and hydrophobically modified nano-silica into high-density polyethylene (HDPE) substrate. The best addition of the fluorinated acrylate polymer and the nano-silica is given as 15% and 5%, to produce the composite with a low surface energy of 29.4 mJ/m2. Through the characterization of contact angle (CA), electrochemical corrosion, scanning electron microscopy (SEM) with energy dispersive X-ray spectrometer (EDS), atomic force microscope (AFM) and thermogravimetry (TG), the composite shows low wettability, good corrosion resistance and thermal stability. The surface hydrophobic property of the composite remains unchanged after being immersed in an acidic (pH = 2) and an alkaline (pH = 12) solution, indicating that the prepared composite has strong adaptability to the extreme environments. In addition, the composite shows better anti-scaling performance than that of the commercial high-density polyethylene (HDPE) and polyvinyl chloride (PVC) pipe materials by application of a dispensing leachate immersion test. The results provide insights into engineering practice for the design and manufacture of pipe materials for leachate collection and transport.


Assuntos
Polietileno , Poluentes Químicos da Água , Acrilatos , Polímeros de Fluorcarboneto , Dióxido de Silício
16.
J Hazard Mater ; 418: 126344, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34130165

RESUMO

Zero valent iron (Fe0) can reduce Cr(VI) in water, where Fe0 and Fe(Ⅱ) are possible electron donors, but passivation and aggregation easily occur to Fe0. To improve the performance of Fe0, a new hybridization strategy of Fe/Cu bimetal and silica-based mesoporous molecular sieve MCM-41 for the removal of Cr(VI) from water has been proposed. The results show that the two-dimensional mesoporous structure of MCM-41 can provide skeleton support for Fe0, improve the mass transfer rate, and overcome the aggregation bottleneck of Fe0. The Cr(VI) removal rate reached 98.98% (pH = 2) after 40 min. The analytical results revealed Cr(VI) removal process: Cr(VI) adsorbed onto Fe/Cu-MCM-41 by electrostatic attraction and other molecular inter-atomic forces. The second metal, Cu, can inhibit the passivation of Fe0 and promote Fe(Ⅱ)through the formation of Fe/Cu battery, thereby promoting the electron transfer. The resulting Cr(Ⅲ) is precipitated as FeCr2O4 and CrxFe1-x(OH)3.

17.
Environ Sci Pollut Res Int ; 28(21): 26313-26324, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33818728

RESUMO

Waste classification is to reduce solid waste and its associated environmental pollution. This paper applied bibliometrics to assess publications related to classification technology of domestic waste from 2000 to 2019. A total of 466 publications were retrieved. The results showed the number of citations and papers increased rapidly. The major publication type regarding waste classification technology is article and English is the primary language for academic communication. The research is multidisciplinary and interdisciplinary, and its research directions are mainly divided into "Engineering," "Environmental Sciences Economics," and "Chemistry." It was identified that Waste Management (85) published most of papers in this topic. Meanwhile, China (93) contributed the most of publications, followed by the USA (42), France (40), Japan (36), and Italy (28). European countries are in the leading position in the study of garbage classification technology. Plastics and waste metals were the existing focus of waste classification technology, and waste identification and classification has become an important classification method. In addition, we also summarized the current mainstream technology progress and possible research challenges.


Assuntos
Bibliometria , Publicações , China , Europa (Continente) , França , Itália , Japão , Tecnologia
18.
Sci Rep ; 11(1): 2612, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510324

RESUMO

Antibiotics are emerging pollutants and increasingly present in aquaculture and industrial wastewater. Due to their impact on the environment and health, their removal has recently become a significant concern. In this investigation, we synthesized nano zero-valent iron-loaded magnetic mesoporous silica (Fe-MCM-41-A) via precipitation and applied the adsorption of oxytetracycline (OTC) from an aqueous solution. The effects of competing ions such as Na+, Ca2+ and Cu2+ on the adsorption process under different pH conditions were studied in depth to providing a theoretical basis for the application of nanomaterials. The characterization of the obtained material through transmission electron microscopy demonstrates that the adsorbent possesses hexagonal channels, which facilitate mass transfer during adsorption. The loaded zero-valent iron made the magnetic, and was thus separated under an applied magnetic field. The adsorption of OTC onto Fe-MCM-41-A is rapid and obeys the pseudo-second-order kinetic model, and the maximum adsorption capacity of OTC is 625.90 mg g-1. The reaction between OTC and Fe-MCM-41-A was inner complexation and was less affected by the Na+. The effect of Ca2+ on the adsorption was small under acidic and neutral conditions. However, the promotion effect of Ca2+ increased by the increase of pH. Cu2+ decreased the removal efficiencies continuously and the inhibitory effects decrease varied with the increase of pH. We propose that surface complexing, ion-exchange, cationic π-bonding, hydrogen bonding, and hydrophobicity are responsible for the adsorption of OTC onto Fe-MCM-41-A.

19.
Environ Sci Pollut Res Int ; 28(1): 494-502, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32813133

RESUMO

Landfill leachate, due to its quantity and inherent risk, is generally collected and transported by piping system for advanced treatment. During the piping, the pipe materials may react with leachate, resulting in corrosion and scaling. In order to reduce possible failures and mitigate the associated consequences, this study provides an indicator system for material selection to aid the pipe system design. The material functional, economic, and environmental attributes are incorporated into the indicator system, to perform a precise selection of commercial drainage pipe materials, thus improving empirically oriented selection. Four common drainage pipe materials including high-density polyethylene (HDPE), polyvinyl chloride (PVC), galvanized steel, and seamless steel are taken as the material alternatives for the selection. Based upon their experimental data, a grey target decision-making framework is employed to perform the priority ranking of the materials. The results indicate that HDPE has the best performance, followed by PVC, galvanized steel, and seamless steel. This study discusses the validity of the selection results and the applicability of the proposed method, to provide insight into  leachate piping system design.


Assuntos
Eliminação de Resíduos , Poluentes Químicos da Água , Corrosão , Polietileno , Cloreto de Polivinila , Poluentes Químicos da Água/análise
20.
Materials (Basel) ; 13(16)2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32784798

RESUMO

Scaling commonly occurs at pipe wall during landfill leachate collection and transportation, which may give rise to pipe rupture, thus posing harm to public health and environment. To prevent scaling, this study prepared a low surface energy nanocomposite by incorporating silicone-acrylate polymer and hydrophobically modified nano-SiO2 into the high-density polyethylene (HDPE) substrate. Through the characterization of contact angle, scanning electron microscopy and thermogravimetry, the results showed that the prepared composite has low wettability and surface free energy, excellent thermal stability and acid-base resistance. In addition, the prepared composite was compared with the commercial HDPE pipe material regarding their performance on anti-scaling by using an immersion test that places their samples into a simulated landfill leachate. It was apparent that the prepared composite shows better scaling resistance. The study further expects to provide insight into pipe materials design and manufacture, thus to improve landfill leachate collection and transportation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...