Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Gastroenterol ; 30(18): 2440-2453, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38764767

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) with hepatic histological NAFLD activity score ≥ 4 and fibrosis stage F ≥ 2 is regarded as "at risk" non-alcoholic steatohepatitis (NASH). Based on an international consensus, NAFLD and NASH were renamed as metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH), respectively; hence, we introduced the term "high-risk MASH". Diagnostic values of seven non-invasive models, including FibroScan-aspartate transaminase (FAST), fibrosis-4 (FIB-4), aspartate transaminase to platelet ratio index (APRI), etc. for high-risk MASH have rarely been studied and compared in MASLD. AIM: To assess the clinical value of seven non-invasive models as alternatives to liver biopsy for diagnosing high-risk MASH. METHODS: A retrospective analysis was conducted on 309 patients diagnosed with NAFLD via liver biopsy at Beijing Ditan Hospital, between January 2012 and December 2020. After screening for MASLD and the exclusion criteria, 279 patients were included and categorized into high-risk and non-high-risk MASH groups. Utilizing threshold values of each model, sensitivity, specificity, positive predictive value (PPV), and negative predictive values (NPV), were calculated. Receiver operating characteristic curves were constructed to evaluate their diagnostic efficacy based on the area under the curve (AUROC). RESULTS: MASLD diagnostic criteria were met by 99.4% patients with NAFLD. The MASLD population was analyzed in two cohorts: Overall population (279 patients) and the subgroup (117 patients) who underwent liver transient elastography (FibroScan). In the overall population, FIB-4 showed better diagnostic efficacy and higher PPV, with sensitivity, specificity, PPV, NPV, and AUROC of 26.9%, 95.2%, 73.5%, 72.2%, and 0.75. APRI, Forns index, and aspartate transaminase to alanine transaminase ratio (ARR) showed moderate diagnostic efficacy, whereas S index and gamma-glutamyl transpeptidase to platelet ratio (GPR) were relatively weaker. In the subgroup, FAST had the highest diagnostic efficacy, its sensitivity, specificity, PPV, NPV, and AUROC were 44.2%, 92.3%, 82.1%, 67.4%, and 0.82. The FIB-4 AUROC was 0.76. S index and GPR exhibited almost no diagnostic value for high-risk MASH. CONCLUSION: FAST and FIB-4 could replace liver biopsy as more effectively diagnostic methods for high-risk MASH compared to APRI, Forns index, ARR, S index, and GPR; FAST is superior to FIB-4.


Assuntos
Aspartato Aminotransferases , Técnicas de Imagem por Elasticidade , Fígado , Hepatopatia Gordurosa não Alcoólica , Valor Preditivo dos Testes , Humanos , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Aspartato Aminotransferases/sangue , Técnicas de Imagem por Elasticidade/métodos , Fígado/patologia , Fígado/diagnóstico por imagem , Adulto , Biópsia , Curva ROC , Contagem de Plaquetas , Sensibilidade e Especificidade , Índice de Gravidade de Doença , Idoso , Biomarcadores/sangue , Fatores de Risco , Medição de Risco/métodos
2.
Sensors (Basel) ; 24(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38676151

RESUMO

The absence of some forms of non-verbal communication in virtual reality (VR) can make VR-based group discussions difficult even when a leader is assigned to each group to facilitate discussions. In this paper, we discuss if the sensor data from off-the-shelf VR devices can be used to detect opportunities for facilitating engaging discussions and support leaders in VR-based group discussions. To this end, we focus on the detection of suppressed speaking intention in VR-based group discussions by using personalized and general models. Our extensive analysis of experimental data reveals some factors that should be considered to enable effective feedback to leaders. In particular, our results show the benefits of combining the sensor data from leaders and low-engagement participants, and the usefulness of specific HMD sensor features.

3.
J Agric Food Chem ; 72(8): 3984-3997, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38357888

RESUMO

Plant secondary metabolites are critical quality-conferring compositions of plant-derived beverages, medicines, and industrial materials. The accumulations of secondary metabolites are highly variable among seasons; however, the underlying regulatory mechanism remains unclear, especially in epigenetic regulation. Here, we used tea plants to explore an important epigenetic mark DNA methylation (5mC)-mediated regulation of plant secondary metabolism in different seasons. Multiple omics analyses were performed on spring and summer new shoots. The results showed that flavonoids and theanine metabolism dominated in the metabolic response to seasons in the new shoots. In summer new shoots, the genes encoding DNA methyltransferases and demethylases were up-regulated, and the global CG and CHG methylation reduced and CHH methylation increased. 5mC methylation in promoter and gene body regions influenced the seasonal response of gene expression; the amplitude of 5mC methylation was highly correlated with that of gene transcriptions. These differentially methylated genes included those encoding enzymes and transcription factors which play important roles in flavonoid and theanine metabolic pathways. The regulatory role of 5mC methylation was further verified by applying a DNA methylation inhibitor. These findings highlight that dynamic DNA methylation plays an important role in seasonal-dependent secondary metabolism and provide new insights for improving tea quality.


Assuntos
Camellia sinensis , Metilação de DNA , Metabolismo Secundário , Estações do Ano , Epigênese Genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Flavonoides/metabolismo , Chá/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Environ Toxicol ; 39(1): 148-155, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37676913

RESUMO

Glufosinate-ammonium (GLA) is a widely used herbicide, but less research has been done on its harmful effects on non-target organisms, especially aquatic organisms. In this study, 600 adult zebrafish were exposed to different concentration of GLA (0, 1.25, 2.5, 5, 10, and 20 mg/L) for 7 days, and the livers were dissected on the eighth day to examine the changes in liver structure, function, oxidative stress, inflammation, apoptosis, and Nrf2 pathway, and finally to clarify the mechanism of GLA induced liver injury in zebrafish. The levels of alanine aminotransferase, aspartate aminotransferase, reactive oxygen species, malondialdehyde, inflammatory factors (IL-6 and TNF-α), and caspase-3 gradually increased, while the levels of superoxide dismutase, catalase, glutathione, and glutathione peroxidase gradually decreased with the increase of GLA concentration. The Nrf2 pathway was activated at low concentrations (1.25-5 mg/L) and significantly inhibited at high concentrations (10 and 20 mg/L). These results suggested that GLA could cause oxidative stress, inflammation, and apoptosis in zebrafish liver. Therefore, GLA can cause liver injury in zebrafish, and at high concentrations, the inhibition of Nrf2 pathway is one of the important causes of liver injury.


Assuntos
Fator 2 Relacionado a NF-E2 , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Fígado , Inflamação/induzido quimicamente , Inflamação/metabolismo
6.
J Agric Food Chem ; 71(48): 19045-19053, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37982559

RESUMO

Pyrrolizidine alkaloids (PAs) have been detected in tea and can threaten human health. However, the specific source of PAs in tea is still unclear. Here, 88 dried tea products collected from six major tea-producing areas in Anhui Province, China, were analyzed. The detection frequency was 76%. The content of total PAs in dried tea was between 1.1 and 90.5 µg/kg, which was all below the MRL recommended by the European Union (150 µg/kg). In the Shexian tea garden, PAs in the weeds and weed rhizospheric soil around tea plants and the fresh tea leaves were analyzed. Intermedine (Im), intermedine-N-oxide (ImNO), and jacobine-N-oxide (JbNO) were transferred through the weed-to-soil-to-tea route into the fresh tea leaves; only Im and ImNO were detected in dried tea samples. Potential risk of the total PAs in the tea infusion was assessed according to the margin of exposure method, and it might be a low concern for public health.


Assuntos
Camellia sinensis , Alcaloides de Pirrolizidina , Humanos , Alcaloides de Pirrolizidina/análise , Plantas Daninhas , Chá , Medição de Risco , Óxidos
7.
Hortic Res ; 10(2): uhac269, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37533676

RESUMO

Theanine content is highly correlated with sensory quality and health benefits of tea infusion. The tender shoots of etiolated and albino tea plants contain higher theanine than the normal green tea plants and are valuable materials for high quality green tea processing. However, why these etiolated or albino tea plants can highly accumulate theanine is largely unknown. In this study, we observed an Arabidopsis etiolated mutant hy1-100 (mutation in Haem Oxygenase 1, HO1) that accumulated higher levels of glutamine (an analog of theanine). We therefore identified CsHO1 in tea plants and found CsHO1 is conserved in amino acid sequences and subcellular localization with its homologs in other plants. Importantly, CsHO1 expression in the new shoots was much lower in an etiolated tea plants 'Huangkui' and an albino tea plant 'Huangshan Baicha' than that in normal green tea plants. The expression levels of CsHO1 were negatively correlated with theanine contents in these green, etiolated and albino shoots. Moreover, CsHO1 expression levels in various organs and different time points were also negatively correlated with theanine accumulation. The hy1-100 was hypersensitive to high levels of theanine and accumulated more theanine under theanine feeding, and these phenotypes were rescued by the expression of CsHO1 in this mutant. Transient knockdown CsHO1 expression in the new shoots of tea plant using antisense oligonucleotides (asODN) increased theanine accumulation. Collectively, these results demonstrated CsHO1 negatively regulates theanine accumulation in tea plants, and that low expression CsHO1 likely contributes to the theanine accumulation in etiolated/albino tea plants.

8.
J Agric Food Chem ; 71(24): 9381-9390, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37293923

RESUMO

Chronic stress can cause intestinal barrier damage. MAPK and NF-κB are closely related to it. Chlorogenic acid (CGA), a dietary polyphenol, has been shown to have intestinal protective effects, but whether by regulating MAPK and NF-κB is not known. Therefore, in this experiment, 24 Wistar rats were randomly divided into 4 groups (C group, CS group, CS + SB203580, and CS + CGA group). Rats in the CS group were restrained stress for 6 h per day for 21 days. Rats in the CS + SB203580 group were given SB203582 (0.5 mg/kg, intraperitoneal injection) 1 h before restraint stress every other day. Rats in the CS + CGA group were given CGA (100 mg/kg, gavage) 1 h before restraint stress. In chronic stress, intestinal barrier damage was evident, while being restored after CGA treatment. After chronic stress, the levels of p-P38 were increased (P < 0.01), while the levels of p-JNK and p-ERK were not changed. The levels of p-p38 were elevated after CGA treatment (P < 0.01). These results suggested that p38MAPK played an important role in chronic stress-induced intestinal injury, and CGA could inhibit p38MAPK activity. Therefore, we chose SB203582 (P38MAPK inhibitor) to elucidate the role of p38. After chronic stress, intestinal tight junction key proteins Occludin, ZO-1, and Claudin3 protein and gene expression were reduced (P < 0.01), while being elevated after CGA or SB203582 intervention (P < 0.05). After CGA treatment, the levels of p-IκB, p-p65, p-p38, and TNF-α were reduced (P < 0.01). SB203582 intervention reduced p-p65 and TNF-α levels significantly (P < 0.01). These results suggested that CGA could inhibit the NF-κB pathway by suppressing p38MAPK, thereby alleviating chronic stress-induced intestinal damage.


Assuntos
Ácido Clorogênico , NF-kappa B , Ratos , Animais , NF-kappa B/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Fator de Necrose Tumoral alfa , Ratos Wistar
10.
Front Plant Sci ; 14: 1146182, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008477

RESUMO

The culturable endophytic fungus Serendipita indica has many beneficial effects on plants, but whether and how it affects physiological activities and phosphorus (P) acquisition of tea seedlings at low P levels is unclear. The objective of this study was to analyze the effects of inoculation with S. indica on growth, gas exchange, chlorophyll fluorescence, auxins, cytokinins, P levels, and expressions of two phosphate transporter (PT) genes in leaves of tea (Camellia sinensis L. cv. Fudingdabaicha) seedlings grown at 0.5 µM (P0.5) and 50 µM (P50) P levels. Sixteen weeks after the inoculation, S. indica colonized roots of tea seedlings, with root fungal colonization rates reaching 62.18% and 81.34% at P0.5 and P50 levels, respectively. Although plant growth behavior, leaf gas exchange, chlorophyll values, nitrogen balance index, and chlorophyll fluorescence parameters of tea seedlings were suppressed at P0.5 versus P50 levels, inoculation of S. indica mitigated the negative effects to some extent, along with more prominent promotion at P0.5 levels. S. indica inoculation significantly increased leaf P and indoleacetic acid concentrations at P0.5 and P50 levels and leaf isopentenyladenine, dihydrozeatin, and transzeatin concentrations at P0.5 levels, coupled with the reduction of indolebutyric acid at P50 levels. Inoculation of S. indica up-regulated the relative expression of leaf CsPT1 at P0.5 and P50 levels and CsPT4 at P0.5 levels. It is concluded that S. indica promoted P acquisition and growth in tea seedlings under P deficit conditions by increasing cytokinins and indoleacetic acid and CsPT1 and CsPT4 expression.

11.
Hortic Res ; 10(2): uhac267, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36778187

RESUMO

Glutamine synthetase type I (GSI)-like proteins are proposed to mediate nitrogen signaling and developmental fate by synthesizing yet unidentified metabolites. Theanine, the most abundant non-proteinogenic amino acid in tea plants, is the first identified metabolite synthesized by a GSI-like protein (CsTSI) in a living system. However, the roles of theanine in nitrogen signaling and development are little understood. In this study we found that nitrogen deficiency significantly reduced theanine accumulation and increased lateral root development in tea plant seedlings. Exogenous theanine feeding significantly repressed lateral root development of seedlings of tea plants and the model plant Arabidopsis. The transcriptomic analysis revealed that the differentially expressed genes in the roots under theanine feeding were enriched in the apoplastic pathway and H2O2 metabolism. Consistently, theanine feeding reduced H2O2 levels in the roots. Importantly, when co-treated with H2O2, theanine abolished the promoting effect of H2O2 on lateral root development in both tea plant and Arabidopsis seedlings. The results of histochemical assays confirmed that theanine inhibited reactive oxygen species accumulation in the roots. Further transcriptomic analyses suggested the expression of genes encoding enzymes involved in H2O2 generation and scavenging was down- and upregulated by theanine, respectively. Moreover, the expression of genes involved in auxin metabolism and signaling, cell division, and cell expansion was also regulated by theanine. Collectively, these results suggested that CsTSI-synthesized theanine is likely involved in the regulation of lateral root development, via modulating H2O2 accumulation, in response to nitrogen levels in tea plants. This study also implied that the module consisting of GSI-like protein and theanine-like metabolite is probably conserved in regulating development in response to nitrogen status in plant species.

12.
Int Immunopharmacol ; 117: 109898, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36827925

RESUMO

Sepsis is currently the main factor of death in the ICU, and the liver, as an important organ of immunity and stable metabolism, can be acutely damaged during sepsis, and the mortality rate of patients with sepsis complicated by acute liver injury is greatly increased. Celastrol (CEL) is derived from the root bark of Tripterygium wilfordii Hook.f.. As a traditional Chinese medicine, CEL has anti-inflammatory, anti-cancer, anti-oxidant, and other biological activities. Obtain CEL and AHI intersection targets via database and construct protein-protein interaction (PPI) network by STRING. GO functional enrichment and KEGG pathway analyses were performed by R studio. Targets were finally selected to perform molecular docking simulations with CEL. In vivo experiments based on the model of AHI were established by intraperitoneal injection of Lipopolysaccharide (LPS) 4 h, and pre-treated with CEL (0.5 mg/kg, 1 mg/kg, 1.5 mg/kg). The results are as follows: 273 genes with the intersection of CEL and AHI were obtained, and GO and KEGG enrichment analysis were used to design the mechanism of inflammation, apoptosis, and oxidative stress-related injury. By constructing the PPI network selected top 10 targets are: STAT3, RELA, MAPK1, MAPK3, TP53, AKT1, HSP90AA1, JUN, TNF, MAPK14, predicted CEL protection AHI design related pathways of MAPK and PI3K/AKT-related signal pathways. In vivo experiments, CEL inhibited the activation of MAPK and PI3K/AKT related pathways, reduced inflammatory response, apoptosis, and oxidative stress, and significantly improved LPS-induced AHI. In summary, this study predicted the mechanisms involved in the protective effect of CEL on AHI through network pharmacology. In vivo, CEL inhibited MAPK and PI3K/AKT-related signaling pathways, and reduced inflammatory response, apoptosis, and oxidative stress to protect LPS-induced AHI.


Assuntos
Medicamentos de Ervas Chinesas , Farmacologia em Rede , Humanos , Lipopolissacarídeos , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Fígado , Antioxidantes
13.
Hortic Res ; 10(1): uhac245, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36643747

RESUMO

Theanine, a unique and the most abundant non-proteinogenic amino acid in tea plants, endows tea infusion with the umami taste and anti-stress effects. Its content in tea correlates highly with green tea quality. Theanine content in new shoots of tea plants is high in mid-spring and greatly decreases in late spring. However, how the decrease is regulated is largely unknown. In a genetic screening, we observed that a yeast mutant, glutamate dehydrolase 2 (gdh2), was hypersensitive to 40 mM theanine and accumulated more theanine. This result implied a role of CsGDH2s in theanine accumulation in tea plants. Therefore, we identified the two homologs of GDH2, CsGDH2.1 and CsGDH2.2, in tea plants. Yeast complementation assay showed that the expression of CsGDH2.1 in yeast gdh2 mutant rescued the theanine hypersensitivity and hyperaccumulation of this mutant. Subcellular localization and tissue-specific expression showed CsGDH2.1 localized in the mitochondria and highly expressed in young tissues. Importantly, CsGDH2.1 expression was low in early spring, and increased significantly in late spring, in the new shoots of tea plants. These results all support the idea that CsGDH2.1 regulates theanine accumulation in the new shoots. Moreover, the in vitro enzyme assay showed that CsGDH2.1 had glutamate catabolic activity, and knockdown of CsGDH2.1 expression increased glutamate and theanine accumulation in the new shoots of tea plants. These findings suggested that CsGDH2.1-mediated glutamate catabolism negatively regulates theanine accumulation in the new shoots in late spring, and provides a functional gene for improving late-spring green tea quality.

14.
Food Addit Contam Part B Surveill ; 16(1): 50-57, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36396606

RESUMO

Pyrrolizidine alkaloids (PAs) can be transferred between plants via soil. Indicators of PAs in tea products are useful for tea garden management. In the present work a total of 37 weed species, 37 weed rhizospheric soils and 24 fresh tea leaf samples were collected from tea gardens, in which PAs were detected in 35 weeds species, 21 soil samples and 10 fresh tea leaves samples. In Shexian tea garden, 12.9 µg/kg of intermedine (Im) in one bud plus three leaves, 1.40 and 14.6 µg/kg of intermedine-N-oxide (ImNO) in one bud plus two leaves and one bud plus three leaves were detected, which were transferred from the PA-producing weeds via soil. However, no PAs were detected in fresh tea leaves collected from Langxi tea garden. The results indicated that synthesis of PAs in weeds and their transfer through the weed-soil-fresh tea leaf route varied with soil environments in different tea gardens.


Assuntos
Contaminação de Alimentos , Plantas Daninhas , Contaminação de Alimentos/análise , Folhas de Planta , Chá , Solo
16.
J Agric Food Chem ; 70(45): 14414-14426, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36318656

RESUMO

The liver is the major organ of metabolism and is extremely vulnerable to chronic stress. Lycopene (LYC) is a natural carotenoid with potent antioxidant and chronic disease potential. However, whether LYC protects against chronic restraint stress (CRS)-induced liver injury and the underlying mechanisms remain unclear. In this study, rats were restrained for 21 days for 6 h per day, with or without gavage of LYC (10 mg/kg). Serum ALT (85.99 ± 4.07 U/L) and AST (181.78 ± 7.35 U/L) and scores of liver injury were significantly increased in the CRS group. LYC significantly promoted the nuclear translocation of Nrf2, elevated the expression of antioxidant genes, and attenuated reactive oxygen radicals (ROS) levels within the liver. Cellular thermal shift assay (CETSA) and molecular docking results indicated that LYC competitively binds to Keap1 with the lowest molecule affinity of -9.0 kcal/mol. Moreover, LYC significantly relieved the hepatic endoplasmic reticulum swelling and decreased the expression of endoplasmic reticulum stress (ERS) hallmarks like GRP78, CHOP, and cleaved caspase-12. Meanwhile, LYC also mitigated CRS-induced hepatocyte apoptosis. Interestingly, every other day, the intraperitoneal injection of the Nrf2 inhibitor brusatol (0.4 mg/kg) significantly counteracted the protective effect of LYC. In conclusion, LYC protects against CRS-induced liver injury by activating the Nrf2 signaling pathway, scavenging ROS, and further attenuating ERS-associated apoptosis pathways.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Fator 2 Relacionado a NF-E2 , Ratos , Animais , Licopeno/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse do Retículo Endoplasmático , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Simulação de Acoplamento Molecular , Doença Hepática Crônica Induzida por Substâncias e Drogas/etiologia , Doença Hepática Crônica Induzida por Substâncias e Drogas/genética , Estresse Oxidativo , Apoptose
17.
J Agric Food Chem ; 70(34): 10532-10542, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35975781

RESUMO

Chronic stress can cause chronic inflammatory injury to the liver. Chlorogenic acid (CGA) is known to have a wide range of biological activities and anti-inflammatory effects. Resolvin D1 (RvD1) is a polyunsaturated fatty acid derivative that has inhibitory effects on a variety of inflammatory diseases. However, whether CGA can inhibit liver inflammation in chronic stress through RvD1 remains unclear. In this work, male rats were subjected to restraint stress for 6 h every day and built a chronic stress model for 21 days. CGA (100 mg/kg) was administered intragastrically 1 h before restraint, with intraperitoneal injection of RvD1 inhibitor WRW4 (antagonist of FPR2, 0.1 mg/kg) or WRW4 solution every 2 days for 30 min before CGA administration. CGA reduced hepatic hemorrhage and inflammatory cell infiltration, alleviated hepatic injury, decreased the activation of the NF-κB pathway and the expression of interleukin 1ß, interleukin 6, and tumor necrosis factor α in the liver, and increased RvD1 in the serum and liver. The therapeutic effect of CGA was blocked after WRW4 intervention. These results suggest that the protective effects of CGA mediate the NF-κB pathway by upregulating the generation of RvD1. Above all, this research demonstrates the liver protective effect of CGA and provides a potential treatment strategy for chronic inflammatory disease.


Assuntos
Ácido Clorogênico , NF-kappa B , Animais , Ácidos Docosa-Hexaenoicos/farmacologia , Inflamação/tratamento farmacológico , Inflamação/patologia , Fígado/metabolismo , Masculino , NF-kappa B/genética , NF-kappa B/metabolismo , Ratos
18.
J Agric Food Chem ; 70(14): 4353-4361, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35380825

RESUMO

Chronic stress causes duodenal damage, in which iron death is likely to play an important role. Chlorogenic acid (CGA), one of the most widely consumed dietary polyphenols, has been shown to protect the intestine. However, it is unclear whether CGA exerts a duodenoprotective effect in chronic stress by inhibiting ferroptosis. In this work, rats were daily exposed to restraint stress for 6 h over 21 consecutive days, with/without CGA (100 mg/kg, gavage). CGA reduced blood hepcidin, iron, reactive oxygen species (ROS), and ferroportin 1 (FPN1) levels and upregulated the levels of ferroptosis-related biomarkers (GPX4, GSH, NADPH, etc.). These results confirmed that CGA inhibited ferroptosis in the duodenum. Furthermore, the use of S3I-201 (STAT3 inhibitor) helped to further clarify the mechanism of action of CGA. Overall, CGA could reduce hepcidin production by inhibiting the IL-6/JAK2/STAT3 pathway in the liver to increase the expression of FPN1 in the duodenum, which restored iron homeostasis and inhibited ferroptosis, alleviating chronic stress-induced duodenal injury.


Assuntos
Ferroptose , Animais , Ácido Clorogênico , Duodeno/metabolismo , Ferroptose/genética , Hepcidinas/genética , Interleucina-6/genética , Interleucina-6/farmacologia , Ferro/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Ratos , Transdução de Sinais
19.
Front Plant Sci ; 12: 770398, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721495

RESUMO

Theanine, a unique non-proteinogenic amino acid, is one of the most abundant secondary metabolites in tea. Its content largely determines green tea quality and price. However, its physiological roles in tea plants remain largely unknown. Here, we showed that salt stress significantly increased the accumulation of glutamate, glutamine, alanine, proline, and γ-aminobutyric acid, as well as theanine, in the new shoots of tea plants. We further found that salt stress induced the expression of theanine biosynthetic genes, including CsGOGATs, CsAlaDC, and CsTSI, suggested that salt stress induced theanine biosynthesis. Importantly, applying theanine to the new shoots significantly enhanced the salt stress tolerance. Similar effects were also found in a model plant Arabidopsis. Notably, exogenous theanine application increased the antioxidant activity of the shoots under salt stress, suggested by reduced the reactive oxygen species accumulation and lipid peroxidation, as well as by the increased SOD, CAT, and APX activities and expression of the corresponding genes. Finally, genetic evidence supported that catalase-mediated antioxidant scavenging pathway is required for theanine-induced salt stress tolerance. Taken together, this study suggested that salt stress induces theanine biosynthesize in tea plants to enhance the salt stress tolerance through a CAT-dependent redox homeostasis pathway.

20.
Oxid Med Cell Longev ; 2021: 4475968, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691354

RESUMO

Low-dose alcohol possesses multiple bioactivities. Accordingly, we investigated the protective effect and related molecular mechanism of low-dose alcohol against acute stress- (AS-) induced renal injury. Herein, exhaustive swimming for 15 min combined with restraint stress for 3 h was performed to establish a rat acute stress model, which was verified by an open field test. Evaluation of renal function (blood creatinine and urea nitrogen), urine test (urine leukocyte esterase and urine occult blood), renal histopathology, oxidative stress, inflammation, and apoptosis was performed. The key indicators of the cytochrome P450 (CYP) 4A1/20-hydroxystilbenetetraenoic acid (20-HETE) pathway, cyclooxygenase (COX)/prostaglandin E2 (PGE2) pathway, and leukotriene B4 (LTB4)/leukotriene B4 receptor 1 (BLT1) pathway were measured by real-time PCR and ELISA. We found that low-dose alcohol (0.05 g/kg, i.p.) ameliorated AS-induced renal dysfunction and histological damage. Low-dose alcohol also attenuated AS-induced oxidative stress and inflammation, presenting as reduced malondialdehyde and hydrogen peroxide formation, increased superoxide dismutase and glutathione activity, and decreased myeloperoxidase, interleukin-6, interleukin-1ß, and monocyte chemoattractant protein-1 levels (P < 0.05). Moreover, low-dose alcohol alleviated AS-induced apoptosis by downregulating Bax and cleaved caspase 3 protein expression and reduced numbers of terminal deoxynucleotidyl transferase-mediated dUTP nick-end label-positive cells (P < 0.01). Correlation analysis indicated that 20-HETE was strongly correlated with oxidative stress, while LTB4 was strongly correlated with inflammation. Low-dose alcohol inhibited AS-induced increases in CYP4A1, CYP4A2, CYP4A3, CYP4A8, and BLT1 mRNA levels and LTB4 and 20-HETE content (P < 0.01). Interestingly, low-dose alcohol had no effect on COX1 or COX2 mRNA expression or the concentration of PGE2. Furthermore, low-dose alcohol reduced calcium-independent phospholipase A2 mRNA expression, but did not affect secreted phospholipase A2 or cytosolic phospholipase A2 mRNA expression. Together, these results indicate that low-dose alcohol ameliorated AS-induced renal injury by inhibiting CYP4A/20-HETE and LTB4/BLT1 pathways, but not the COX/PGE2 pathway.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Consumo de Bebidas Alcoólicas/fisiopatologia , Citocromo P-450 CYP4A/metabolismo , Leucotrieno B4/metabolismo , Animais , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...