Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35808259

RESUMO

Tool condition monitoring can be employed to ensure safe and full utilization of the cutting tool. Hence, remaining useful life (RUL) prediction of a cutting tool is an important issue for an effective high-speed milling process-monitoring system. However, it is difficult to establish a mechanism model for the life decreasing process owing to the different wear rates in various stages of cutting tool. This study proposes a three-stage Wiener-process-based degradation model for the cutting tool wear estimation and remaining useful life prediction. Tool wear stages classification and RUL prediction are jointly addressed in this work in order to take full advantage of Wiener process, as this three-stage Wiener process definitely constitutes to describe the degradation processes at different wear stages, based on which the overall useful life can be accurately obtained. The numerical results obtained using extensive experiment indicate that the proposed model can effectively predict the cutting tool's remaining useful life. Empirical comparisons show that the proposed model performs better than existing models in predicting the cutting tool RUL.

2.
Comput Biol Med ; 75: 63-73, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27253618

RESUMO

To investigate the effect of myocardial viscoeslasticity on heart function, this paper presents a finite element model based on a hyper-viscoelastic model for the passive myocardium and Hill's three-element model for the active contraction. The hyper-viscoelastic model considers the myocardium microstructure, while the active model is phenomenologically based on the combination of Hill's equation for the steady tetanized contraction and the specific time-length-force property of the myocardial muscle. To validate the finite element model, the end-diastole strains and the end-systole strain predicted by the model are compared with the experimental values in the literature. It is found that the proposed model not only can estimate well the pumping function of the heart, but also predicts the transverse shear strains. The finite element model is also applied to analyze the influence of viscoelasticity on the residual stresses in the myocardium.


Assuntos
Elasticidade , Análise de Elementos Finitos , Modelos Cardiovasculares , Contração Miocárdica/fisiologia , Miocárdio , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA