Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(7): 11202-11220, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38570974

RESUMO

On-chip microring resonators (MRRs) have been proposed to construct time-delayed reservoir computing (RC) systems, which offer promising configurations available for computation with high scalability, high-density computing, and easy fabrication. A single MRR, however, is inadequate to provide enough memory for the computation task with diverse memory requirements. Large memory requirements are satisfied by the RC system based on the MRR with optical feedback, but at the expense of its ultralong feedback waveguide. In this paper, a time-delayed RC is proposed by utilizing a silicon-based nonlinear MRR in conjunction with an array of linear MRRs. These linear MRRs possess a high quality factor, providing enough memory capacity for the RC system. We quantitatively analyze and assess the proposed RC structure's performance on three classical tasks with diverse memory requirements, i.e., the Narma 10, Mackey-Glass, and Santa Fe chaotic timeseries prediction tasks. The proposed system exhibits comparable performance to the system based on the MRR with optical feedback, when it comes to handling the Narma 10 task, which requires a significant memory capacity. Nevertheless, the dimension of the former is at least 350 times smaller than the latter. The proposed system lays a good foundation for the scalability and seamless integration of photonic RC.

2.
ACS Appl Mater Interfaces ; 16(11): 14171-14182, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38466769

RESUMO

Recently, flexible pressure sensors have drawn great attention because of their potential application in human-machine interfaces, healthcare monitoring, electronic skin, etc. Although many sensors with good performance have been reported, researchers mostly focused on surface morphology regulation, and the effect of the resistance characteristics on the performance of the sensor was still rarely systematically investigated. In this paper, a strategy for modulating electron transport is proposed to adjust the linear range and sensitivity of the sensor. In the modulating process, we constructed a double conductive layer (DCL) and grid-assistant face-to-face structure and obtained the sensor with a wide linear range of 0-700 kPa and a high sensitivity of 57.5 kPa-1, which is one of the best results for piezoresistive sensors. In contrast, the sensor with a single conductive layer (SCL) and simple face-to-face structure exhibited a moderate linear range (7 kPa) and sensitivity (2.8 kPa-1). Benefiting from the great performance, the modulated sensor allows for clear pulse wave detection and good recognition of gait signals, which indicates the great application potential in human daily life.

3.
Mater Horiz ; 11(9): 2271-2280, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38439709

RESUMO

Large-area pressure sensor arrays with a wide linear response range and high sensitivity are beneficial to map the inhomogeneous interface pressure, which is significant in practical applications. Here, we demonstrate a pneumatic spraying method to prepare large-area microstructure films (PSMF) for high performance pressure sensor arrays. The sprayed surface morphology is designable by controlling the spraying parameters. It is worth noting that the constructed "broccoli" like morphology with a swollen top and shrunken bottom inspired a new mechanism to enlarge the linear response range by decreasing the series resistance with pressure increasing. At the same time, the pneumatic sprayed "broccoli" has a rough surface due to droplet stacking, which reduces the initial current effectively. Hence, the sensor achieves a 10 000 kPa ultrawide linear response range with a high sensitivity (98.71 kPa-1), and low detection (5 Pa). The prepared sensor has a small static response error (4.4%) and 5000 cycle full-range dynamic response durability. Finally, the constructed sensor arrays can distinguish the pressure distribution in different ranges clearly, which indicates a great potential in health care, motion detection, and the tire industry.

4.
Acta Biomater ; 176: 234-249, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38218359

RESUMO

Thrombosis and intimal hyperplasia (IH) are two major problems faced by the small-diameter vascular grafts. Mimicking the native endothelium and physiological elasticity of blood vessels is considered an ideal strategy. Polyurethane (PU) is suitable for vascular grafts in mechanics because of its molecular designability and elasticity; however, it generally lacks the endothelium-like biofunctions and hydrophilicity. To solve this contradiction, a hydrophilic PU elastomer is developed by crosslinking the hydrophobic hard-segment chains containing diselenide with diaminopyrimidine-capped polyethylene glycol (PEG). In this network, the hydrophobic aggregation occurs underwater due to the uninterrupted hard-segment chains, leading to a significant self-enhancement in mechanics, which can be tailored to the elasticity similar to natural vessels by adjusting the crosslinking density. A series of in vitro studies confirm that the hydrophilicity of PEG and biological activities of aminopyrimidine and diselenide give the PU multi-biological functions similar to the native endothelium, including stable catalytic release of nitric oxide (NO) in the physiological level; anti-adhesion and anti-activation of platelets; inhibition of migration, adhesion, and proliferation of smooth muscle cells (SMCs); and antibacterial effect. In vivo studies further prove the good histocompatibility with both significant reduction in immune response and calcium deposition. STATEMENT OF SIGNIFICANCE: Constructing small-diameter vascular grafts similar to the natural vessels is considered an ideal method to solve the restenosis caused by thrombosis and intimal hyperplasia (IH). Because of the long-term stability, bulk modification is more suitable for implanted materials, however, how to achieve the biofunctions, hydrophilicity, and elasticity simultaneously is still a big challenge. In this work, a kind of polyurethane-based elastomer has been designed and prepared by crosslinking the functional long hard-segment chains with PEG soft segments. The underwater elasticity based on hydration-induced stiffening and the multi-biological functions similar to the native endothelium are compatible with natural vessels. Both in vitro and in vivo experiments demonstrate the potential of this PU as small-diameter vascular grafts.


Assuntos
Poliuretanos , Trombose , Humanos , Poliuretanos/farmacologia , Poliuretanos/química , Elastômeros/farmacologia , Hiperplasia , Prótese Vascular , Interações Hidrofóbicas e Hidrofílicas
5.
Opt Express ; 31(23): 37722-37739, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38017896

RESUMO

Machine learning-assisted spectroscopy analysis faces a prominent constraint in the form of insufficient spectral samples, which hinders its effectiveness. Meanwhile, there is a lack of effective algorithms to simulate synthetic spectra from limited samples of real spectra for regression models in continuous scenarios. In this study, we introduced a continuous conditional generative adversarial network (CcGAN) to autonomously generate synthetic spectra. The labels employed for generating the spectral data can be arbitrarily selected from within the range of labels associated with the real spectral data. Our approach effectively produced spectra using a small spectral dataset obtained from a self-interference microring resonator (SIMRR)-based sensor. The generated synthetic spectra were subjected to evaluation using principal component analysis, revealing an inability to discern them from the real spectra. Finally, to enhance the DNN regression model, these synthetic spectra are incorporated into the original training dataset as an augmentation technique. The results demonstrate that the synthetic spectra generated by CcGAN exhibit exceptional quality and significantly enhance the predictive performance of the DNN model. In conclusion, CcGAN exhibits promising potential in generating high-quality synthetic spectra and delivers a superior data augmentation effect for regression tasks.

6.
Macromol Rapid Commun ; 44(24): e2300453, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37800610

RESUMO

An effective and practical antibacterial strategy is to design multifunctional and stimuli-responsive materials that exhibit antibacterial activity in response to bacterial triggers. In this study, because the metabolism of Staphylococcus aureus (S. aureus) can acidify the surrounding environment and pH level can affect the lower critical solution temperature of temperature/pH dual-sensitive polymers, a monomer containing a temperature-sensitive N-isopropyl amide derivative and pH-sensitive tertiary amine groups is first synthesized. Then, the monomer is copolymerized with a polyurethane chain, and partial tertiary amine groups are quaternized to obtain bactericidal activity. The modified polyurethane exhibits temperature/pH sensitivity, antibacterial adhesion activity, bactericidal activity, and good cytocompatibility. An in situ investigation of bacterial behavior and pH changes in the bacterial suspension during the process confirms that the temperature/pH dual-sensitive polyurethane successfully achieves antibacterial activity though the metabolic activity of S. aureus without external intervention. This design concept provides a new perspective for antibacterial material design.


Assuntos
Poliuretanos , Staphylococcus aureus , Poliuretanos/farmacologia , Temperatura , Aminas , Antibacterianos/farmacologia , Concentração de Íons de Hidrogênio
7.
IEEE Trans Pattern Anal Mach Intell ; 45(11): 13730-13748, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37819810

RESUMO

Automatic modulation classification (AMC) is an important technology for the monitoring, management, and control of communication systems. In recent years, machine learning approaches are becoming popular to improve the effectiveness of AMC for radio signals. However, the automatic modulation open-set recognition (AMOSR) scheme that aims to identify the known modulation types and recognize the unknown modulation signals is not well studied. Therefore, in this paper, we propose a novel multi-modal marginal prototype framework for radio frequency (RF) signals (MMPRF) to improve AMOSR performance. First, MMPRF addresses the problem of simultaneous recognition of closed and open sets by partitioning the feature space in the way of one versus other and marginal restrictions. Second, we exploit the wireless signal domain knowledge to extract a series of signal-related features to enhance the AMOSR capability. In addition, we propose a GAN-based unknown sample generation strategy to allow the model to understand the unknown world. Finally, we conduct extensive experiments on several publicly available radio modulation data, and experimental results show that our proposed MMPRF outperforms the state-of-the-art AMOSR methods.

8.
ACS Appl Mater Interfaces ; 15(25): 29801-29812, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37306556

RESUMO

In the context of meniscus reconstruction in knee joints, current bulk biomaterials fail to meet the clinical demands for both excellent mechanical strength and low coefficient of friction. In this research, zwitterionic polyurethanes (PUs) with varying sulfobetaine (SB) groups were synthesized as the potential materials for artificial meniscus to investigate the relationship between the structures of SB groups and the performances of PUs. Under the saturation condition of 3 mg/mL hyaluronic acid aqueous solution, PU with long-alkyl chains and SB groups (PU-hSB4) exhibited a good tensile modulus (111.5 MPa) because the hydrophobic interaction of carbon chains was able to maintain the ordered aggregations of hard segment domains. Interestingly, hydrophobic chains in the molecular chain could also improve the tribological performance of PU-hSB4 instead of resulting from the surface roughness of samples, the components of lubricants, and the counterface of samples. A thicker and relatively stable hydration layer of noncrystal water was formed on the surface of PU-hSB4, which exhibited superior resistance to external forces compared to other PUs. Even if the hydration layer was damaged, PU-hSB4 was able to resist the compression of cartilage due to its high surface modulus, thus maintaining a similar and stable coefficient of friction (0.15-0.16) to native meniscus (0.18) and excellent wear resistance. In addition, the low cytotoxicity of PU-hSB4 further demonstrated its great potential to be applied in artificial meniscus instead.

9.
Artigo em Inglês | MEDLINE | ID: mdl-37310824

RESUMO

Deep learning technology has found a promising application in lightweight model design, for which pruning is an effective means of achieving a large reduction in both model parameters and float points operations (FLOPs). The existing neural network pruning methods mostly start from the consideration of the importance of model parameters and design parameter evaluation metrics to perform parameter pruning iteratively. These methods were not studied from the perspective of network model topology, so they might be effective but not efficient, and they require completely different pruning for different datasets. In this article, we study the graph structure of the neural network and propose a regular graph pruning (RGP) method to perform a one-shot neural network pruning. Specifically, we first generate a regular graph and set its node-degree values to meet the preset pruning ratio. Then, we reduce the average shortest path-length (ASPL) of the graph by swapping edges to obtain the optimal edge distribution. Finally, we map the obtained graph to a neural network structure to realize pruning. Our experiments demonstrate that the ASPL of the graph is negatively correlated with the classification accuracy of the neural network and that RGP has a strong precision retention capability with high parameter reduction (more than 90%) and FLOPs reduction (more than 90%) (the code for quick use and reproduction is available at https://github.com/Holidays1999/Neural-Network-Pruning-through-its-RegularGraph-Structure).

10.
Biomed Mater ; 18(3)2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36731137

RESUMO

Mimicking the multilayered structure of blood vessels and constructing a porous inner surface are two effective approaches to achieve mechanical matching and rapid endothelialization to reduce occlusion in small-diameter vascular grafts. However, the fabrication processes are complex and time consuming, thus complicating the fabrication of personalized vascular grafts. A simple and versatile strategy is proposed to prepare the skeleton of vascular grafts by rolling self-adhesive polymer films. These polymer films are directly fabricated by dropping a polymer solution on a water surface. For the tubes, the length and wall thickness are controlled by the rolling number and position of each film, whereas the structure and properties are tailored by regulating the solution composition. Double-layer vascular grafts (DLVGs) with microporous inner layers and impermeable outer layers are constructed; a microporous layer is formed by introducing a hydrophilic polymer into a polyurethane (PU) solution. DLVGs exhibit a J-shaped stress-strain deformation profile and compliance comparable to that of coronary arteries, sufficient suture retention strength and burst pressure, suitable hemocompatibility, significant adhesion, and proliferation of human umbilical vein endothelial cells. Freshly prepared PU tubes exhibit good cytocompatibility. Thus, this strategy demonstrates potential for rapid construction of small-diameter vascular grafts for individual customization.


Assuntos
Células Endoteliais , Água , Humanos , Prótese Vascular , Esqueleto , Polímeros , Poliuretanos/química
11.
Small ; 18(27): e2201769, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35674332

RESUMO

Fine-tuning the crystallinity and self-aggregation features of donors/acceptor materials toward high-efficiency organic solar cells (OSCs) is of crucial importance. Here, a convenient yet effective way to simultaneously control the crystallinity and self-aggregation of the fused ring electron acceptor (FREA) is demonstrated by altering the length of the first-position branched alkyl chain on the cyclic unit. Specifically, three carbazole-based FREAs, 4TC-4F-C6C6, 4TC-4F-C8C8, and 4TC-4F-C10C10, are synthesized by changing the length of the first-position branched alkyl chain on the carbazole unit. The crystallinity of the studied acceptors decreases as the branched alkyl chain is lengthened. The ability of the acceptors to undergo self-aggregation decreases in the order 4TC-4F-C10C10, 4TC-4F-C6C6, and 4TC-4F-C8C8. The medium crystallinity and lower self-aggregation properties of 4TC-4F-C8C8 result in favorable phase separation when blended with poly-[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione))] (PM6), which is conducive to effective exciton dissociation and charge transport. Consequently, the OSC device based on PM6:4TC-4F-C8C8 delivers the best power conversion efficiency of 14.85%.

12.
Colloids Surf B Biointerfaces ; 216: 112577, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35623259

RESUMO

Surface patterning is a promising approach to prevent bacterial adhesion and biofilm formation without the concerns of antimicrobial resistance. To determine the parameters of a patterned surface that can affect bacterial behavior, a sphere-like coccus (Staphylococcus aureus) was investigated on a series of polyurethane films with ordered hemisphere patterns. The bacterial retention data in a growth medium indicated that the surface patterns significantly decreased bacterial adhesion and proliferation. The most notable effects were observed with the 2 µm-pattern as well as the patterned polycaprolactone and polystyrene films, and the accessible contact area of the polyurethane films, surface wettability, and spatial confinement, did not show an influence. An optical microscope with a modified incubation cell was used for in situ real-time observations of bacterial colonization, proliferation, and migration. Based on appropriate statistical analyses, it was concluded that topographical geometry played a dominant role. In combination with the retention assessment in a nongrowth medium, it was found that pattern-mediated inhibition of biofilm formation was mainly achieved by affecting bacterial proliferation rather than adhesion. This study provides new insight for designing biofilm-resistant biomimetic materials.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Bactérias , Aderência Bacteriana , Biofilmes , Humanos , Poliuretanos/farmacologia , Propriedades de Superfície
13.
Chaos ; 32(1): 013130, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35105115

RESUMO

A visibility graph transforms time series into graphs, facilitating signal processing by advanced graph data mining algorithms. In this paper, based on the classic limited penetrable visibility graph method, we propose a novel mapping method named circular limited penetrable visibility graph, which replaces the linear visibility line in limited penetrable visibility graph with nonlinear visibility arc for pursuing more flexible and reasonable mapping of time series. Tests on degree distribution and some common network features of the generated graphs from typical time series demonstrate that our circular limited penetrable visibility graph can effectively capture the important features of time series and show higher robust classification performance than the traditional limited penetrable visibility graph in the presence of noise. The experiments on real-world time-series datasets of radio and electroencephalogram signals also suggest that the structural features provided by a circular limited penetrable visibility graph, rather than a limited penetrable visibility graph, are more useful for time-series classification, leading to higher accuracy. This classification performance can be further enhanced through structural feature expansion by adopting subgraph networks. All of these results demonstrate the effectiveness of our circular limited penetrable visibility graph model.

14.
J Mater Chem B ; 9(10): 2548, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33660734

RESUMO

Correction for 'On-demand removable hydrogels based on photolabile cross-linkings as wound dressing materials' by Haiyang Wu et al., J. Mater. Chem. B, 2019, 7, 5669-5676, DOI: 10.1039/C9TB01544B.

15.
ACS Omega ; 5(47): 30444-30453, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33283092

RESUMO

In this work, well-dispersed fumed SiO2/cis-1,4-polyisoprene rubber (IR) masterbatch was first obtained through an effective wet mixing method, and the properties of the corresponding vulcanizate were studied. Before curing with activator and sulfur, IR solution was blended and co-coagulated with SiO2 suspension modified by bis(3-trimethoxysilypropyl) tetrasulfide in n-hexane. The modification of TESPT imparted evenly distributed SiO2 particles in IR and improved interfacial binding among SiO2 and IR. Hence, the prepared compound presented better processability and the corresponding vulcanizate presented higher physical performance, including higher tensile strength, lower heat buildup, and better fatigue resistance than that prepared in the dry mixing method. Additionally, higher wet skid resistance and lower rolling resistance could be observed in fabricated SiO2/IR vulcanizate. The employed wet mixing method is economical and efficient, which is promising in preparing rubber composites with comprehensive performance.

16.
Eng Life Sci ; 20(5-6): 181-185, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32874181

RESUMO

The micropore structure is prerequisite for fast and durable endothelialization of artificial small diameter blood vessels (ASDBVs). Although some methods, such as salt leaching, coagulation, and electrospinning, have been developed to construct micropores for ASDBVs, the uncontrollability of the structure and the complicated procedures of the process are still the issues to be concerned about. In this study, a compact device based on the principle of centrifugal force is established and used to prepare polyurethane (PU) ASDBVs with micropore structures by blasting different porogens. It is found that the glass beads could construct micropores with regular round shape, uniform distribution, and controllable size (60-350 µm), which significantly improves the endothelialization of PU-based ASDBVs, especially when the pore size is about 60 µm. This method is easy-accessible and wide-applicable, which provides a new pathway for the research and development of ASDBVs.

17.
ACS Biomater Sci Eng ; 6(6): 3529-3538, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33463187

RESUMO

Injectable hydrogels have become increasingly important in the fields of tissue engineering and drug delivery. However, their biological applications are greatly limited by the weak mechanics and poor stability under a physiological environment. Herein, we developed a stable, strong, and injectable hydrogel by linking strong micelle cross-linking with tetra-armed PEG. This dual cross-linking strategy has not only made hydrogels nonswelling but also maintained the relative integrity of the gel network during the degradation process, both of which work together to ensure the mechanical strength and stability of our hydrogel under a physiological environment. A compressive stress of 40 MPa was achieved at 95% strain, and the mechanical properties could remain stable even after immersion into a physiological environment for two months. Besides, it also showed outstanding antifatigue properties, good tissue adhesion, and good cytocompatibility. On the basis of these characteristics, these dual cross-linking injectable hydrogels would find appealing application in biomedicine especially for the repair of load-bearing soft tissues.


Assuntos
Hidrogéis , Engenharia Tecidual , Sistemas de Liberação de Medicamentos , Micelas
18.
Adv Healthc Mater ; 8(20): e1900582, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31529779

RESUMO

Thrombus and restenosis are two main factors that cause the failure of vascular implants. Constructing a functional and confluent layer of endothelial cells (ECs) is considered an ideal method to prevent these problems. However, oxidative stress induced by the disease and implantation can damage ECs and hinder the endothelialization of implants. Thus, developing biomaterials that can protect ECs adhesion and proliferation from oxidative stress is urgently needed for the rapid endothelialization of vascular implants. In this work, a novel polyurethane (PU-TBN) is synthesized by employing tetramethylpyrazine-nitrone (TBN) as end-group to endow polymers with dual functions of antioxidant activity and promoting endothelialization. Common PU without TBN is also prepared to be control. Compared to PU, PU-TBN significantly promotes human umbilical vein endothelial cells (HUVECs) adhesion and proliferation, where cells spread well and a confluent endothelial layer is formed. PU-TBN also shows obvious free radical scavenging activity, and thus effectively attenuates oxidative stress to protect HUVECs from oxidative apoptosis. Moreover, PU-TBN exhibits enhanced antiplatelets effect, excellent biocompatibility, and similar mechanical properties to PU. These characteristics can endow PU-TBN with great potential to be used as vascular implants or coatings of other materials for rapid endothelialization under complex oxidative stress environment.


Assuntos
Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Estresse Oxidativo , Poliuretanos/química , Pirazinas/química , Engenharia Tecidual/métodos , Animais , Antioxidantes/farmacologia , Apoptose , Materiais Biocompatíveis , Prótese Vascular , Adesão Celular , Proliferação de Células , Sequestradores de Radicais Livres , Radicais Livres , Humanos , Camundongos , Células NIH 3T3 , Fármacos Neuroprotetores , Oxigênio/metabolismo , Adesividade Plaquetária , Polímeros/química , Coelhos , Resistência à Tração , Trombose/patologia
19.
J Mater Chem B ; 7(37): 5669-5676, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31475280

RESUMO

Because of their complex and evolving characteristics, burn wounds always need repeated treatments to gradually and specifically re-expose the wound for further care, which cause pain to patients and reinjury to newly formed tissues. Thus, it is highly desirable to remove wound dressings in a controllable, painless, noninvasive, and facile way. Herein, we synthesized a photocleavable polyethylene glycol (PEG) crosslinker, and prepared a series of hydrogels by mixing this cross-linker with glycol chitosan (GC) in different ratios. In situ gelation occurred within 2 min, which was beneficial for hydrogels to be injected to the wound site and cover irregular shapes. The hydrogels were destroyed upon exposure to UVA light, which was noninvasive and could spatiotemporally control their breakdown, leading to the on-demand, noninvasive, and controllable removal of the hydrogels. The hydrogels also showed good swelling, suitable mechanical properties and adhesive strength. Moreover, the cytotoxicity assay demonstrated the good cytocompatibility of the precursors and degradation products. This photo-triggered on-demand removal will provide a promising method to alleviate pain during dressing change and facilitate future wound care.


Assuntos
Adesivos/uso terapêutico , Hidrogéis/uso terapêutico , Cicatrização/fisiologia , Humanos
20.
Biomacromolecules ; 20(9): 3399-3407, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31339699

RESUMO

Because of the difference in osmotic pressure, most tough hydrogels swell under physiological conditions, which seriously weakens their mechanical properties, limiting their applications in biomedicine. Herein, a novel strategy based on strong and high-density micelle cross-linkings is proposed to prepare nonswellable and tough hydrogel. To realize a strong micelle cross-linker, the synergetic effect of hydrophobic and quadruple hydrogen-bonding interactions is employed by introducing an alkyl chain-protected ureido pyrimidinone moiety into a segmented copolymer backbone. The length of the alkyl is the key factor in determining the strength of the hydrophobic interaction, which was carefully tailored to gain micelles with high strength and suitable solubility. A supramolecular hydrogel was formed in situ by simply linking micelle cross-linkers with poly(ethylene glycol) chains. The strong and high-density micelle cross-linkings restrain multiple effective chains outside the micelle from stretching during swelling, and the deformability of micelle cross-linkings disperses the local stress to maintain the network with high cross-linking density upon loading. Therefore, the hydrogel exhibited an outstanding nonswelling behavior under physiological conditions and excellent mechanical properties with a compressive strength of 4 MPa. The rapid in situ gelation also facilitated injection and cell encapsulation. Meanwhile, it also showed good tissue adhesion, cytocompatibility, and suitable degradability. This novel and facile strategy can offer new insights into the exploitation of cross-linkings to prepare nonswellable hydrogels for biomedical applications.


Assuntos
Hidrogéis/química , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Polímeros/química , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/farmacologia , Hidrogéis/farmacologia , Ligação de Hidrogênio/efeitos dos fármacos , Micelas , Polietilenoglicóis/química , Polímeros/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA