Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 271: 116417, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38688063

RESUMO

Since synovial hypoxic microenvironment significantly promotes the pathological progress of rheumatoid arthritis (RA), hypoxia-inducible factor 1 (HIF-1) has been emerged as a promising target for the development of novel therapeutic agents for RA treatment. In this study, we designed and synthesized a series of diaryl substituted isoquinolin-1(2H)-one derivatives as HIF-1 signaling inhibitors using scaffold-hopping strategy. By modifying the substituents on N-atom and 6-position of isoquinolin-1-one, we discovered compound 17q with the most potent activities against HIF-1 (IC50 = 0.55 µM) in a hypoxia-reactive element (HRE) luciferase reporter assay. Further pharmacological studies revealed that 17q concentration-dependently blocked hypoxia-induced HIF-1α protein accumulation, reduced inflammation response, inhibited cellular invasiveness and promoted VHL-dependent HIF-1α degradation in human RA synovial cell line. Moreover, 17q improved the pathological injury of ankle joints, decreased angiogenesis and attenuated inflammation response in the adjuvant-induced arthritis (AIA) rat model, indicating the promising therapeutic potential of compound 17q as an effective HIF-1 inhibitor for RA therapy.


Assuntos
Artrite Reumatoide , Isoquinolinas , Transdução de Sinais , Animais , Humanos , Masculino , Ratos , Antirreumáticos/farmacologia , Antirreumáticos/química , Antirreumáticos/síntese química , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Artrite Experimental/metabolismo , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Relação Dose-Resposta a Droga , Descoberta de Drogas , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isoquinolinas/química , Isoquinolinas/farmacologia , Isoquinolinas/síntese química , Estrutura Molecular , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Quinolonas/síntese química , Quinolonas/química , Quinolonas/farmacologia
2.
FEBS Open Bio ; 13(9): 1723-1736, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37400956

RESUMO

Stress-related illnesses are linked to the onset and progression of renal diseases and depressive disorders. To investigate stress-induced changes in the renal transcriptome associated with the development of depressive behaviors, we generated here a chronic social defeat stress (CSDS) model of C57 BL/6 male mice and then performed RNA sequencing of the kidneys to obtain an inflammation-related transcriptome. Administration of the antidepressant drug fluoxetine (10 mg·kg-1 ·day-1 ) during CSDS induction could partially alleviate renal inflammation and reverse CSDS-induced depression-like behaviors. Moreover, fluoxetine also modulated gene expression of stress-related hormone receptors, including prolactin and melanin-concentrating hormone. These results suggest that CSDS can induce gene expression changes associated with inflammation in the kidney of C57 BL/6 male mice, and this inflammation can be treated effectively by fluoxetine.


Assuntos
Antidepressivos , Fluoxetina , Animais , Camundongos , Masculino , Fluoxetina/farmacologia , Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Depressão/metabolismo , Inflamação/tratamento farmacológico , Rim
3.
Anal Chim Acta ; 1252: 341075, 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-36935142

RESUMO

A simple tactic for electrochemical determination of a typical biomarker for breast cancer, human epidermal growth factor receptor 2 (HER2), was presented via the construction of a low fouling sensing interface functionalized with polyethylene glycol (PEG) and peptide. The HER2 biosensor was developed based on an electrode modified by the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and Au nanoparticles (AuNPs) as the sensing substrate, and followed by the immobilization of an antifouling PEG and a peptide with both recognizing and antifouling properties. Thanks to the combined antifouling effect of the PEG and peptide, and the specific recognizing ability of the peptide to the target HER2, the developed electrochemical biosensor exhibited strong antifouling performances in complex biofluids, such as human blood and serum, and it was capable of assaying target HER2 within a very wide linear range (1.0 pg mL-1 to 1.0 µg mL-1), with an ultralow limit of detection (0.44 pg mL-1). The combination of two kinds of antifouling biomaterials (PEG and peptide) offered an effective strategy for the development of low fouling sensing platforms suitable for practical assay in complex biotic environments.


Assuntos
Incrustação Biológica , Técnicas Biossensoriais , Nanopartículas Metálicas , Humanos , Polietilenoglicóis/química , Ouro/química , Incrustação Biológica/prevenção & controle , Nanopartículas Metálicas/química , Peptídeos/química , Técnicas Eletroquímicas
4.
Anal Chim Acta ; 1238: 340646, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36464436

RESUMO

An effective strategy to construct low fouling electrochemical biosensors for assaying serum biomarkers was proposed based on specially designed α-aminoisobutyric acid (Aib) incorporated peptides. The Aib-peptides were designed to be of antifouling properties, and at the same to incorporate Aib residues in their interior to enhance the hydrolytic stability. In order to construct the electrochemical biosensor, two kinds of Aib-peptides labelled with biotin were modified on the electrode surface: One with cysteine terminal for easy attachment to the electrode modified with gold nanoparticles, the other with unique terminal peptide sequence for specific binding of immunoglobulin G (IgG), and they were connected through the streptavidin-biotin affinity system. Owing to the interposition of Aib residues, the peptides as well as the constructed biosensors showed excellent antifouling performances and enhanced stability against enzymatic degradation in serum. Furthermore, the IgG biosensor constructed with the Aib-peptides displayed a very low detection limit (29.5 pg mL-1) and a broad linear range (100 pg mL-1 - 10 µg mL-1), and it was able to assay IgG in clinical human sera with decent accuracy and reliability. This strategy provides a new path for the construction of stable antifouling biosensors based on functional peptides for practical biomarker assaying in real clinical samples.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Humanos , Biotina , Ouro , Reprodutibilidade dos Testes , Peptídeos , Imunoglobulina G
5.
Cell Rep ; 41(6): 111592, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36351383

RESUMO

Steady-state extramedullary hematopoiesis during adulthood is an emerging field of great interest. The meninges contain both innate and adaptive immune cells, which provide immunosurveillance of the central nervous system (CNS). Hematopoietic progenitors that give rise to meningeal immune cells remain elusive. Here, we report that steady-state meninges of adult mice host hematopoietic stem cells (HSCs), as defined by long-term, efficient, multi-lineage reconstitution and self-renewal capacity in the meninges, blood, spleen, and bone marrow of sublethally irradiated adult recipients. HSCs lodge in the meninges after birth with local expression of pro-hematopoietic niche factors. Meningeal HSCs are locally maintained in homeostasis and get replenished from the blood only when the resident pool is reduced. With a tissue-specific expression profile, meningeal HSCs can provide the CNS with a constant supply of leukocytes more adapted to local microenvironment.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas , Camundongos , Animais , Células-Tronco Hematopoéticas/metabolismo , Hematopoese/fisiologia , Medula Óssea , Baço , Meninges , Camundongos Endogâmicos C57BL
6.
Front Pharmacol ; 13: 896601, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046815

RESUMO

Major depressive disorder (MDD) is a highly prevalent psychiatric disorder. But the treatment of depression remains challenging. Anti-inflammatory treatments frequently produce antidepressant effects. EPO-derived helix-B peptide ARA290 has been reported to retain the anti-inflammatory and tissue-protective functions of EPO without erythropoiesis-stimulating effects. The effects of ARA290 on MDD remain elusive. This study established chronic unpredictable mild stress and chronic social defeat stress mouse models. Daily administration of ARA290 during chronic stress induction in two mouse models ameliorated depression-like behavior, similar to fluoxetine. With marginal effects on peripheral blood hemoglobin and red cells, ARA290 and fluoxetine reversed chronic stress-induced increased frequencies and/or numbers of CD11b+Ly6Ghi neutrophils and CD11b+Ly6Chi monocytes in the bone marrow and meninges. Furthermore, both drugs reversed chronic stress-induced microglia activation. Thus, ARA290 ameliorated chronic stress-induced depression-like behavior in mice through, at least partially, its anti-inflammatory effects.

7.
Arch Med Res ; 53(5): 469-482, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35817647

RESUMO

BACKGROUND AND AIM: Previous studies have shown that the hepatitis C virus (HCV) core protein plays an important role in the metastasis of hepatocellular carcinoma (HCC) cells. This study aimed to identify the potential mechanism of HCV core protein in HCC. METHODS: A transcription factor microarray analysis was performed to identify the factors regulated by the HCV core protein. A comprehensive bioinformatics analysis approach was utilized to predict the functions, regulatory signaling pathways and downstream target genes of the differentially regulated transcription factors. Dual-luciferase assays, qPCR, Western blotting, ERK pathway inhibition experiments and siRNA knockdown experiments were performed to verify the effects of the HCV core protein on PEA3, SRF and c-Fos, as well asthe underlying mechanism. The migration/invasion assay and scratch assay served to confirm the metastasis-promoting mechanism of the HCV core protein. RESULTS: The results demonstrated that altered expression of PEA3, SRF and c-Fos mediated by the HCV core protein were associated with the MAPK/ERK pathway. c-Fos was a downstream target protein of PEA3 and SRF. Knockdown of PEA3-SRF/c-Fos expression and ERK pathway components suppressed the migration and invasion activity of hepatocytes by affecting MMP2 and MMP9 expression. CONCLUSION: We provided preliminary evidence that the role of the HCV core protein in promoting metastasis is at least partially dependent on the activation of the MAPK/ERK/PEA3-SRF/c-Fos/MMP2/MMP9 axis. These findings reveal a novel mechanism by which the HCV core protein promotes HCC metastasis and may provide new therapeutic targets for patients with metastatic HCC.


Assuntos
Carcinoma Hepatocelular , Hepatite C , Neoplasias Hepáticas , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Hepatócitos/metabolismo , Humanos , Neoplasias Hepáticas/patologia , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz , Fatores de Transcrição , Proteínas do Core Viral/metabolismo , Proteínas do Core Viral/farmacologia
8.
Biosens Bioelectron ; 206: 114162, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35272212

RESUMO

Herein, a universal strategy for the construction of highly sensitive and low fouling biosensors was proposed based on antifouling peptides conjugated with recognizing DNA probes. The peptide-DNA conjugate was formed through a reagent-free click reaction between a typical DNA aptamer modified with 5'-dibenzocyclooctyne (DBCO) and the designed antifouling peptide terminated with biotin and the azide group at its two ends. With the assistance of streptavidin (SA), the electrochemical biosensor was constructed via immobilization of the straight peptides and peptide-DNA conjugates in sequence onto the electrode surface modified with electrodeposited poly(3,4-ethylenedioxythiophene) (PEDOT) and gold nanoparticles (AuNPs). The prepared biosensor exhibited excellent antifouling performances in various human bodily fluids such as serum, sweat and urine, with a wide linear response range for CA125 from 0.01 U mL-1 to 1000 U mL-1, and a low limit of detection of 0.003 U mL-1. Combining the advantages of the antifouling peptide and recognizing DNA probe, this sensing strategy was capable of assaying CA125 in undiluted human serum, and it also offered a highly promising way for the development of different antifouling biosensors through the conjugation of antifouling peptides with various DNA probes.


Assuntos
Incrustação Biológica , Técnicas Biossensoriais , Nanopartículas Metálicas , Neoplasias , Incrustação Biológica/prevenção & controle , Biomarcadores Tumorais , Antígeno Ca-125 , DNA , Sondas de DNA , Técnicas Eletroquímicas , Ouro , Humanos , Peptídeos
9.
Theranostics ; 12(5): 2248-2265, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265209

RESUMO

Fulminant hepatitis (FH) is a life-threatening disease with partially understood pathogenesis. It has been demonstrated that myeloid-derived suppressor cells (MDSCs) are recruited into the liver during this process, and their augmented accumulation by various strategies protects against liver injury. However, the underlying mechanism(s) remain elusive. Receptor for activated C kinase 1 (RACK1), a multi-functional scaffold protein, is highly expressed in normal liver and has been implicated in liver physiology and diseases, but the in vivo role of hepatic RACK1 in FH remains unknown. Methods: Survival curves and liver damage were monitored to investigate the in vivo role of hepatic RACK1 in FH. The liver microenvironment was explored by microarray-based transcriptome analysis, flow cytometry, immunoblotting, and immunohistochemistry. MDSCs were identified with phenotypic and functional characteristics. Functional antibodies were used to target MDSCs. Co-culture techniques were used to study the underlying mechanism(s) of protection. The interaction of RACK1 with histone deacetylase 1 (HDAC1) and the consequent effects on HDAC1 ubiquitination were analyzed. Ectopic expression of HDAC1 with recombinant adeno-associated virus serotype 8 was conducted to confirm the role of HDAC1 in the protective effects of hepatic RACK1 deficiency against FH. Post-translational modifications of RACK1 were also investigated during the induction of FH. Results: Liver-specific RACK1 deficiency rendered mice resistant to FH. RACK1-deficient livers exhibited high basal levels of chemokine (C-X-C motif) ligand 1 (CXCL1) and S100 calcium-binding protein A9 (S100A9), associated with MDSC accumulation under steady-state conditions. Targeting MDSCs with an antibody against either Gr1 or DR5 abrogated the protective effects of liver-specific RACK1 deficiency. Accumulated MDSCs inhibited inflammatory cytokine production from macrophages and enhanced IκB kinase (IKK)/NF-κB pathway activation in hepatocytes. Further investigation revealed that RACK1 maintained HDAC1 protein level in hepatocytes by direct binding, thereby controlling histone H3K9 and H3K27 acetylation at the Cxcl1 and S100a9 promoters. Ectopic expression of HDAC1 in livers with RACK1 deficiency partially reversed the augmented Cxcl1/S100a9 → MDSCs → IKK/NF-κB axis. During FH induction, RACK1 was phosphorylated at serine 110, enhancing its binding to ubiquitin-conjugating enzyme E2T and promoting its ubiquitination and degradation. Conclusion: Liver-specific RACK1 deficiency protects against FH through accelerated HDAC1 degradation and the consequent CXCL1/S100A9 upregulation and MDSC accumulation.


Assuntos
Necrose Hepática Massiva , Células Supressoras Mieloides , Animais , Calgranulina B/metabolismo , Hepatócitos/metabolismo , Necrose Hepática Massiva/metabolismo , Camundongos , Células Supressoras Mieloides/metabolismo , NF-kappa B/metabolismo , Receptores de Quinase C Ativada/metabolismo
10.
Anal Chem ; 93(42): 14351-14357, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34648255

RESUMO

Biofouling has been a substantial burden on biomarker analysis in complex biological media, leading to poor sensitivity and selectivity or even malfunction of the sensing devices. In this work, an electrochemical biosensor with excellent antifouling ability and high stability was fabricated based on amyloid-like bovine serum albumin (AL-BSA) crosslinked with the conducting polymer polyaniline (PANI). Compared with the crosslinked conventional bovine serum albumin (BSA), the crosslinked AL-BSA exhibited enhanced antifouling capability, and it was able to form an effective antifouling film within a significantly short reaction time. With further immobilization of immunoglobulin M (IgM) antibodies onto the prepared AL-BSA surface via the formation of amide bonds, an electrochemical biosensor capable of assaying IgM in human serum samples with superior selectivity and sensitivity was constructed. The biosensor exhibited excellent antifouling performance even in 100% human serum, a low limit of detection down to 2.32 pg mL-1, and acceptable accuracy for real sample analysis compared with the standard enzyme-linked immunosorbent assay for IgM detection. This strategy of using AL-BSA to construct antifouling sensing interfaces provided a reliable diagnostic method for the detection of a series of protein biomarkers in complex biological media.


Assuntos
Incrustação Biológica , Técnicas Biossensoriais , Incrustação Biológica/prevenção & controle , Técnicas Eletroquímicas , Humanos , Peptídeos , Polímeros , Soroalbumina Bovina
11.
PLoS Pathog ; 17(9): e1009901, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34506605

RESUMO

Neddylation, an important type of post-translational modification, has been implicated in innate and adapted immunity. But the role of neddylation in innate immune response against RNA viruses remains elusive. Here we report that neddylation promotes RNA virus-induced type I IFN production, especially IFN-α. More importantly, myeloid deficiency of UBA3 or NEDD8 renders mice less resistant to RNA virus infection. Neddylation is essential for RNA virus-triggered activation of Ifna gene promoters. Further exploration has revealed that mammalian IRF7undergoes neddylation, which is enhanced after RNA virus infection. Even though neddylation blockade does not hinder RNA virus-triggered IRF7 expression, IRF7 mutant defective in neddylation exhibits reduced ability to activate Ifna gene promoters. Neddylation blockade impedes RNA virus-induced IRF7 nuclear translocation without hindering its phosphorylation and dimerization with IRF3. By contrast, IRF7 mutant defective in neddylation shows enhanced dimerization with IRF5, an Ifna repressor when interacting with IRF7. In conclusion, our data demonstrate that myeloid neddylation contributes to host anti-viral innate immunity through targeting IRF7 and promoting its transcriptional activity.


Assuntos
Imunidade Inata/imunologia , Fator Regulador 7 de Interferon/imunologia , Células Mieloides/imunologia , Infecções por Vírus de RNA/imunologia , Vírus de RNA/imunologia , Animais , Fator Regulador 7 de Interferon/biossíntese , Camundongos , Células Mieloides/metabolismo , Proteína NEDD8/deficiência , Processamento de Proteína Pós-Traducional , Ubiquitinas/deficiência
12.
J Immunol ; 207(5): 1411-1418, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34348973

RESUMO

The receptor for activated C kinase 1 (RACK1) adaptor protein has been implicated in viral infection. However, whether RACK1 promotes in vivo viral infection in mammals remains unknown. Moreover, it remains elusive how RACK1 is engaged in antiviral innate immune signaling. In this study, we report that myeloid RACK1 deficiency does not affect the development and survival of myeloid cells under resting conditions but renders mice less susceptible to viral infection. RACK1-deficient macrophages produce more IFN-α and IFN-ß in response to both RNA and DNA virus infection. In line with this, RACK1 suppresses transcriptional activation of type 1 IFN gene promoters in response to virus infection. Analysis of virus-mediated signaling indicates that RACK1 inhibits the phosphorylation of IRF3/7. Indeed, RACK1 interacts with IRF3/7, which is enhanced after virus infection. Further exploration indicates that virus infection triggers AMPK activation, which in turn phosphorylates RACK1 at Thr50 RACK1 phosphorylation at Thr50 enhances its interaction with IRF3/7 and thereby limits IRF3/7 phosphorylation. Thus, our results confirm that myeloid RACK1 promotes in vivo viral infection and provide insight into the control of type 1 IFN production in response to virus infection.


Assuntos
Proteínas Quinases Ativadas por AMP , Fator Regulador 3 de Interferon , Proteínas Adaptadoras de Transdução de Sinal , Animais , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/metabolismo , Camundongos , Fosforilação , Receptores de Quinase C Ativada , Transdução de Sinais
13.
Biomaterials ; 275: 120958, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34130142

RESUMO

Tumor-associated macrophages (TAMs) in the tumor microenvironment (TME) play an important role in the development of tumors by secreting a variety of cytokines or directly communicating with tumor cells, making TAMs-targeted therapeutic strategies very attractive. It has been reported that oncogene c-Myc is related to every aspect of the oncogenic process of tumor cells and the alternative activation of macrophages. Hence, we constructed a glycolipid nanocarrier containing ROS-responsive peroxalate linkages (CSOPOSA) for ROS-triggered release of drugs and further modified it with Ex 26 (Ex 26-CSOPOSA), a selective sphingosine 1-phosphate receptor 1 (S1PR1) antagonist, to achieve the dual-targeted delivery of the c-Myc inhibitor JQ1 via S1PR1, which is overexpressed on both tumor cells and TAMs, thereby inducing apoptosis of tumor cells, and blocking M2 polarization of macrophages. More strikingly, our studies found that JQ1 could effectively inhibit the migration of tumor cells induced by M2 macrophages-derived exosomes via blocking Caveolin-1 related intercellular exosome exchange through lncRNA H19 and miR-107. The in vivo results revealed that this dual-targeted delivery strategy effectively inhibited tumor growth and metastasis with less systemic toxicity, providing a potential method for effective tumor treatment.


Assuntos
Caveolina 1 , Exossomos , Neoplasias Experimentais/tratamento farmacológico , Espécies Reativas de Oxigênio , Animais , Linhagem Celular Tumoral , Portadores de Fármacos , Liberação Controlada de Fármacos , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Proto-Oncogênicas c-myc , Células RAW 264.7 , Microambiente Tumoral
14.
Mol Ther Nucleic Acids ; 24: 127-139, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-33738144

RESUMO

Hepatitis B (HB) is a viral infectious disease that seriously endangers human health, and since there are no radical drugs to counter this, effective and safe therapies urgently need to be developed. HB virus (HBV) mainly infects hepatocytes (HCs), while the drugs are easily phagocytosed by Kupffer cells (KCs). In this study, the glutathione concentration difference between HCs and KCs was examined and utilized in an ideal drug-release strategy. Here, galactosylated chitosan-oligosaccharide-SS-octadecylamine (Gal-CSSO) was prepared to accurately deliver 10-23 DNAzyme DrzBC (blocking HBeAg expression) or DrzBS (blocking HBsAg expression) in targeted HB therapy. In vitro Gal-CSSO systems exhibited low cytotoxicity, endosomal escape, and glutathione responsiveness. The HBeAg and HBsAg secretion of HepG2.2.15 was significantly decreased by Gal-CSSO systems, and the maximum inhibition rates were 1.82-fold and 2.38-fold greater than those of commercial Lipofectamine 2000 (Lipo2000) systems. In vivo Gal-CSSO systems exhibited HC targeting and HC microenvironmental responsiveness without noticeable hepatotoxicity or systemic toxicity. The HBeAg and HBsAg titers of the HBV-infected mice were evidently decreased by Gal-CSSO systems, and the inhibition rates were 1.52-fold and 1.22-fold greater than those of Lipo2000 systems. This study presents a kind of glycolipid-like polymer micelles that promise efficient and safe gene therapy of HB.

15.
Biomacromolecules ; 21(7): 2818-2828, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32496052

RESUMO

Lymph nodes are proposed as the intriguing target in cancer immunotherapy, and cellular immunity is vital for vaccines to fight against cancer. However, inefficient delivery of vaccines to lymph nodes and deficient lysosomal escape of antigens result in weak cellular immunity, which restrains the strength of vaccines in inducing antitumor immune responses. Hence, dendritic cell membrane (DCM)/histidine-modified stearic acid-grafted chitosan (HCtSA)/ovalbumin (OVA) micelles, as pH-responsive biomimetic vaccines, were fabricated to target lymph nodes and induce cellular immunity for enhanced antitumor immune responses. DCM/HCtSA/OVA micelles exhibited pH-dependent antigen release behavior, which resulted in efficient escape of antigens from dendritic cell (DC) lysosomes. Besides, DCM/HCtSA/OVA micelles accumulated and reserved in the lymph nodes, which ensured effective uptake by DCs. Importantly, DCM/HCtSA/OVA micelles induced potent T cell immune responses, promoted secretion of antitumor-related cytokines, and notably inhibited tumor growth. Overall, DCM/HCtSA/OVA micelles exhibit great potential in targeted immunotherapy and can provide guidance for the design of vaccines.


Assuntos
Vacinas Anticâncer , Vacinas , Animais , Antígenos , Biomimética , Células Dendríticas , Concentração de Íons de Hidrogênio , Imunidade Celular , Linfonodos , Camundongos , Camundongos Endogâmicos C57BL , Micelas , Ovalbumina
16.
Carbohydr Polym ; 240: 116270, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32475559

RESUMO

Tumor-draining lymph node (TDLN), already bathed in tumor antigens, has been proposed as an intriguing site for cancer immunotherapy. Targeted delivery of adjuvants to TDLN, presumably could induce antitumor immunity for personalized immunotherapy. Although molecular adjuvants can be used for personalized immunotherapy, their efficacy is limited by insufficient antigen uptake by dendritic cells (DCs). In contrast, nanomaterial-based adjuvants can enhance antigen uptake by DCs by capturing antigens. Herein, mannose modified stearic acid-grafted chitosan micelles (MChSA), which presumably could target TDLN, were engineered to capture endogenous antigens and enhance antigen uptake by DCs for personalized immunotherapy. MChSA micelles showed strong antigen-capturing and TDLN targeting ability. Importantly, MChSA micelles induced robust CD4+ and CD8+ T cell responses, stimulated antitumor related cytokine secretion and notably inhibited tumor growth. MChSA micelles, which can target TDLN to induce potent antitumor immune responses as antigen-capturing adjuvants, exhibit great potential in personalized cancer immunotherapy.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Quitosana/química , Células Dendríticas/efeitos dos fármacos , Linfonodos , Neoplasias/terapia , Animais , Linhagem Celular Tumoral , Células Dendríticas/citologia , Imunoterapia , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Micelas
17.
Signal Transduct Target Ther ; 5(1): 82, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32467564

RESUMO

Although targeted therapy has been extensively investigated for breast cancers, a molecular target with broad application is currently unavailable due to the high heterogeneity of these cancers. Mammaglobin-A (Mam-A), which is overexpressed in most breast carcinomas, has been proposed as a promising target. However, the lack of specific targeting moieties due to uncertain binding epitopes hampers further translational study. Here, seven potential epitopes of Mam-A were disclosed, and a unique epitope was then identified in most types of breast cancers, despite the genotypic heterogeneity. With phage display technology, the epitope was determined to be N-terminal amino acids 42-51 of Mam-A (N42-51). Then, the N42-51 epitope-specific monoclonal antibody, mAb785, was conjugated to poly lactic-co-glycolic acid (PLGA) nanoparticles loaded with therapeutic agents, thereby enhancing the drug uptake and therapeutic efficacy in different genotypes of breast cancers. The computer simulation of the N42-51 epitope and the mAb785 structures, as well as their interactions, further revealed the specific targeting mechanism of the mAb785-conjugated nanoparticles to breast cancers.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos Imunológicos/farmacologia , Neoplasias da Mama/terapia , Mamoglobina A/farmacologia , Anticorpos Monoclonais/imunologia , Antineoplásicos Imunológicos/imunologia , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Epitopos/genética , Epitopos/imunologia , Feminino , Humanos , Mamoglobina A/genética , Mamoglobina A/imunologia , Nanopartículas/química , Proteínas de Neoplasias/genética , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia
18.
ACS Biomater Sci Eng ; 6(5): 3217-3229, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33463256

RESUMO

High invasion and metastasis are the major obstacles to successful breast cancertherapy. Indocyanine green (ICG), a photosensitizer for photothermal therapy (PTT), shows potent anticancer efficacy when combined with the chemotherapeutic drug doxorubicin (DOX). Human serum albumin (HSA), a biocompatible carrier material, has been successfully used for the delivery of paclitaxel (Abraxane). In addition, there are ICG functional binding regions in HSA. Thus, a smart assembled nanoplatform (DI@HSA NPs) was constructed to achieve the synergistic effects of chemo- photothermal therapy against breast cancer. Compared to free ICG and free DOX, DI@HSA NPs showed satisfactory stability and exhibited an enhanced tumor targeting capacity. The mild hyperthermia generated by DI@HSA NPs can not only cause tumor photothermal ablation and promote the uptake of DI@HSA NPs by 4T1 cells, but also protect the healthy tissues nearby the tumor from overheating injury. More importantly, DI@HSA NPs greatly amplified the infiltration of CD4+ T cells and CD8+ T cells, resulting in inhibited tumor growth and metastasis. DI@HSA NPs, as a simple biocompatible nanoagent, showed excellent inhibition of breast cancer growth and metastasis by chemo-photothermal therapy, providing a potential strategy for the future therapy of breast cancer.


Assuntos
Neoplasias da Mama , Hipertermia Induzida , Neoplasias da Mama/tratamento farmacológico , Linfócitos T CD8-Positivos , Humanos , Terapia Fototérmica , Albumina Sérica Humana
19.
Carbohydr Polym ; 229: 115435, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31826424

RESUMO

Micelles are one of the most investigated nanocarriers for drug delivery. In this study, polymeric micelles based on chitosan were prepared to explore the delivery mechanism which was critical for enhancing tumor targeting but still remain elusive. The chitosan polymer COSA was synthesized and the polymeric micelles showed good self-assembly ability, good dispersion stability and low toxicity. After being intravenously administered, the micelles were selectively taken up by circulating monocytes in a receptor-mediated way (almost 94% uptake in Ly-6Chi monocytes, below 7% in all other circulating cells) and reach the tumor with the subsequent travel of these cells. In addition, the micelles in macrophages (differentiated from circulating monocytes) can be exocytosed and subsequently taken up by cancer cells. The delivery mechanism of COSA micelles is directional for the novel strategies to enhance tumor targeting and the micelles are promising candidates for diseases in which monocytes are directly implicated.


Assuntos
Quitosana/metabolismo , Portadores de Fármacos/metabolismo , Micelas , Monócitos/metabolismo , Animais , Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Endocitose , Exocitose , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/metabolismo , Células RAW 264.7
20.
Carbohydr Polym ; 212: 215-221, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30832850

RESUMO

DrzBC and DrzBS (10-23 DNAzyme) could block the expression of HBV e- and s- gene respectively. But the application of 10-23 DNAzyme was limited owing to the lack of appropriate delivery vehicles. Chitosan oligosaccharide-SS-Octadecylamine (CSSO), a redox-responsive nano-sized polymeric carrier, could self-aggregate and bind with DNA by electrostatic interaction at proper mass ratio. Compared with the traditional commercial carrier Lipo2000, CSSO exhibited lower cytotoxicity, efficient cellular uptake by targeting cells, and rapidly DNA released in cytoplasm after escaping from endosomes. Including the same DNA concentration, Lipo2000/(DrzBC or DrzBS) showed maximum inhibitory rate on HBeAg (47.29 ±â€¯1.86%) and HBsAg (33.58 ±â€¯0.72%) secretion after 48 h incubation, and then both decreased. In contrast, HBeAg secretion inhibition by CSSO/DrzBC and HBsAg secretion inhibition by CSSO/DrzBS were up to 73.86 ±â€¯1.77% and 67.80 ±â€¯2.51% at 48 h, and further increased to 83.83 ±â€¯2.34% and 76.79 ±â€¯2.18% at 72 h, respectively. CSSO is a promising redox-responsive polymeric carrier for efficient anti-Hepatitis B Virus gene therapy.


Assuntos
Aminas/administração & dosagem , Quitosana/administração & dosagem , Terapia Genética/métodos , Vírus da Hepatite B/efeitos dos fármacos , Oligossacarídeos/administração & dosagem , Polímeros/administração & dosagem , Aminas/metabolismo , Quitosana/metabolismo , DNA Viral/efeitos dos fármacos , DNA Viral/genética , DNA Viral/metabolismo , Relação Dose-Resposta a Droga , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/metabolismo , Células Hep G2 , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Humanos , Oligossacarídeos/metabolismo , Oxirredução/efeitos dos fármacos , Polímeros/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...