Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(27): eado6793, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968360

RESUMO

Multimodal haptic perception is essential for enhancing perceptual experiences in augmented reality applications. To date, several artificial tactile interfaces have been developed to perceive pressure and precontact signals, while simultaneously detecting object type and softness with quantified modulus still remains challenging. Here, inspired by the campaniform sensilla on insect antennae, we proposed a hemispherical bimodal intelligent tactile sensor (BITS) array using the triboelectric effect. The system is capable of softness identification, modulus quantification, and material type recognition. In principle, due to the varied deformability of materials, the BITS generates unique triboelectric output fingerprints when in contact with the tested object. Furthermore, owing to the different electron affinities, the BITS array can accurately recognize material type (99.4% accuracy), facilitating softness recognition (100% accuracy) and modulus quantification. It is promising that the BITS based on the triboelectric effect has the potential to be miniaturized to provide real-time accurate haptic information as an artificial antenna toward applications of human-machine integration.


Assuntos
Biomimética , Biomimética/métodos , Humanos , Percepção do Tato , Tato/fisiologia , Animais
2.
Small ; : e2400673, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700057

RESUMO

Parasitic side reactions and dendrites formation hinder the application of aqueous zinc ion batteries due to inferior cycling life and low reversibility. Against this background, N-methyl formamide (NMF), a multi-function electrolyte additive is applied to enhance the electrochemical performance. Studied via advanced synchrotron radiation spectroscopy and DFT calculations, the NMF additive simultaneously modifies the Zn2+ solvation structure and ensures uniform zinc deposition, thus suppressing both parasitic side reactions and dendrite formation. More importantly, an ultralong cycling life of 3115 h in the Zn||Zn symmetric cell at a current density of 0.5 mA cm-2 is achieved with the NMF additive. Practically, the Zn||PANI full cell utilizing NMF electrolyte shows better rate and cycling performance compared to the pristine ZnSO4 aqueous electrolyte. This work provides useful insights for the development of high-performance aqueous metal batteries.

3.
Small Methods ; : e2301670, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634248

RESUMO

Flow sensing exhibits significant potential for monitoring, controlling, and optimizing processes in industries, resource management, and environmental protection. However, achieving wireless real-time and omnidirectional sensing of gas/liquid flow on a simple, self-contained device without external power support has remained a formidable challenge. In this study, a compact-sized, fully self-powered wireless sensing flowmeter (CSWF) is introduced with a small size diameter of down to less than 50 mm, which can transmit real-time and omnidirectional wireless signals, as driven by a rotating triboelectric nanogenerator (R-TENG). The R-TENG triggers the breakdown discharge of a gas discharge tube (GDT), which enables flow rate wireless sensing through emitted electromagnetic waves. Importantly, the performance of the CSWF is not affected by the R-TENG's varied output, while the transmission distance is greater than 10 m. Real-time wireless remote monitoring of wind speed and water flow rate is successfully demonstrated. This research introduces an approach to achieve a wireless, self-powered environmental monitoring system with a diverse range of potential applications, including prolonged meteorological observations, marine environment monitoring, early warning systems for natural disasters, and remote ecosystem monitoring.

4.
Small ; : e2400099, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507728

RESUMO

Profiting from the unique atomic laminated structure, metallic conductivity, and superior mechanical properties, transition metal carbides and nitrides named MAX phases have shown great potential as anodes in lithium-ion batteries. However, the complexity of MAX configurations poses a challenge. To accelerate such application, a minus integrated crystal orbital Hamilton populations descriptor is innovatively proposed to rapidly evaluate the lithium storage potential of various MAX, along with density functional theory computations. It confirms that surface A-element atoms bound to lithium ions have odds of escaping from MAX. Interestingly, the activated A-element atoms enhance the reversible uptake of lithium ions by MAX anodes through an efficient alloying reaction. As an experimental verification, the charge compensation and SnxLiy phase evolution of designed Zr2SnC MAX with optimized structure is visualized via in situ synchrotron radiation XRD and XAFS technique, which further clarifies the theoretically expected intercalation/alloying hybrid storage mechanism. Notably, Zr2SnC electrodes achieve remarkably 219.8% negative capacity attenuation over 3200 cycles at 1 A g-1. In principle, this work provides a reference for the design and development of advanced MAX electrodes, which is essential to explore diversified applications of the MAX family in specific energy fields.

5.
Angew Chem Int Ed Engl ; 63(15): e202401014, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38334002

RESUMO

Developing high connectivity (>8) three-dimensional (3D) covalent organic frameworks (COFs) towards new topologies and functions remains a great challenge owing to the difficulty in getting high connectivity organic building blocks. This however represents the most important step towards promoting the diversity of COFs due to the still limited dynamic covalent bonds available for constructing COFs at this stage. Herein, highly connected phthalocyanine-based (Pc-based) 3D COFs MPc-THHI-COFs (M=H2, Ni) were afforded from the reaction between 2,3,9,10,16,17,23,24-octacarboxyphthalocyanine M(TAPc) (M=H2, Ni) and 5,5',5'',5''',5'''',5'''''-(triphenylene-2,3,6,7,10,11-hexayl)hexa(isophthalohydrazide) (THHI) with 12 connecting sites. Powder X-ray diffraction analysis together with theoretical simulations and transmission electron microscopy reveals their crystalline nature with an unprecedented non-interpenetrated shp topology. Experimental and theoretical investigations disclose the broadened visible light absorption range and narrow optical band gap of MPc-THHI-COFs. This in combination with their 3D nanochannels endows them with efficient photocatalysis performance for H2O2 generation from O2 and H2O via 2e- oxygen reduction reaction and 2e- water oxidation reaction under visible-light irradiation (λ >400 nm). This work provides valuable result for the development of high connectivity functional COFs towards diverse application potentials.

6.
ACS Appl Mater Interfaces ; 16(4): 4741-4750, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38239127

RESUMO

Covalent organic frameworks (COFs) are notable for their remarkable structure, function designability, and tailorability, as well as stability, and the introduction of "open metal sites" ensures the efficient binding of small molecules and activation of substrates for heterogeneous catalysis and energy storage. Herein, we use the postsynthetic metal sites to catalyze polysulfide conversion and to boost the binding affinity to active matter for lithium-sulfur batteries (LSBs). A dual-pore COF, USTB-27, with hxl topology has been successfully assembled from the imine chemical reaction between 2,3,8,9,14,15-hexa(4-formylphenyl)diquinoxalino [2,3-a:2',3'-c]phenazine and [2,2'-bipyridine]-5,5'-diamine. The chelating nitrogen sites of both modules are able to postsynthetically functionalize with single cobalt sites to generate USTB-27-Co. The discharge capacity of the sulfur-loaded S@USTB-27-Co composite in a LSB is 1063, 945, 836, 765, 696, and 644 mA h g-1 at current densities of 0.1, 0.2, 0.5, 1.0, 2.0, and 5.0 C, respectively, much superior to that of non-cobalt-functionalized species S@USTB-27. Following the increased current densities, the rate performance of S@USTB-27-Co is much better than that of S@USTB-27. In particular, the capacity retention at 5.0 C has a magnificent increase from 19% for the latter species to 61% for the former one. Moreover, S@USTB-27-Co exhibits a higher specific capacity of 543 mA h g-1 than that of S@USTB-27 (402 mA h g-1) at a current density of 1.0 C after electrochemical cycling for 500 runs. This work illustrates the "open metal sites" strategy to engineer the active chemical component conversion in COF channels as well as their binding strength for specific applications.

7.
Nat Commun ; 15(1): 678, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263147

RESUMO

Realization of stable and industrial-level H2O2 electroproduction still faces great challenge due large partly to the easy decomposition of H2O2. Herein, a two-dimensional dithiine-linked phthalocyaninato cobalt (CoPc)-based covalent organic framework (COF), CoPc-S-COF, was afforded from the reaction of hexadecafluorophthalocyaninato cobalt (II) with 1,2,4,5-benzenetetrathiol. Introduction of the sulfur atoms with large atomic radius and two lone-pairs of electrons in the C-S-C linking unit leads to an undulated layered structure and an increased electron density of the Co center for CoPc-S-COF according to a series of experiments in combination with theoretical calculations. The former structural effect allows the exposition of more Co sites to enhance the COF catalytic performance, while the latter electronic effect activates the 2e- oxygen reduction reaction (2e- ORR) but deactivates the H2O2 decomposition capability of the same Co center, as a total result enabling CoPc-S-COF to display good electrocatalytic H2O2 production performance with a remarkable H2O2 selectivity of >95% and a stable H2O2 production with a concentration of 0.48 wt% under a high current density of 125 mA cm-2 at an applied potential of ca. 0.67 V versus RHE for 20 h in a flow cell, representing the thus far reported best H2O2 synthesis COFs electrocatalysts.

8.
Small ; 20(15): e2307743, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009525

RESUMO

Herein, a series of imine-linked covalent organic frameworks (COFs) are developed with advanced ordered mesoporous hollow spherical nanomorphology and ultra-large mesopores (4.6 nm in size), named OMHS-COF-M (M = H, Co, and Ni). The ordered mesoporous hollow spherical nanomorphology is revealed to be formed via an Ostwald ripening mechanism based on a one-step self-templated strategy. Encouraged by its unique structural features and outstanding photoelectrical property, the OMHS-COF-Co material is applied as the photocatalyst for CO2-to-CO reduction. Remarkably, it delivers an impressive CO production rate as high as 15 874 µmol g-1 h-1, a large selectivity of 92.4%, and a preeminent cycling stability. From in/ex situ experiments and density functional theory (DFT) calculations, the excellent CO2 photoreduction performance is ascribed to the desirable cooperation of unique ordered mesoporous hollow spherical host and abundant isolated Co active sites, enhancing CO2 activation, and improving electron transfer kinetics as well as reducing the energy barriers for intermediates *COOH generation and CO desorption.

9.
Small Methods ; 8(7): e2301115, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38145365

RESUMO

Aqueous zinc ion batteries (AZIBs) show great potential in large-scale energy storage systems. However, the inferior cycling life due to water-induced parasitic reactions and uncontrollable dendrites growth impede their application. Electrolyte optimization via the use of additives is a promising strategy to enhance the stability of AZIBs. Nevertheless, the mechanism of optimal multifunctional additive strategy requires further exploration. Herein, sodium dodecyl benzene sulfonate (SDBS) is proposed as a dual-functional additive in ZnSO4 electrolyte. Benefiting from the additive, both side reactions and zinc dendrites growth are significantly inhibited. Further, a synchrotron radiational spectroscopic study is employed to investigate SDB- adjusted electric double layer (EDL) near the Zn surface and the optimized solvation sheath of Zn2+. First-principles calculations verify the firm adsorption of SDB-, and restriction of random diffusion of Zn2+ on the Zn surface. In particular, the SDBS additive endows Zn||Zn symmetric cells with a 1035 h ultra-stable plating/stripping at 0.2 mA cm-2. This work not only provides a promising design strategy by dual-functional electrolyte additives for high stable AZIBs, but also exhibits the prospect of synchrotron radiation spectroscopy analysis on surface EDL and Zn2+ solvation shell optimization.

10.
J Am Chem Soc ; 145(46): 25332-25340, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37944150

RESUMO

Rational control and understanding of isomerism are of significance but still remain a great challenge in reticular frameworks, in particular, for covalent organic frameworks (COFs) due to the complicated synthesis and energy factors. Herein, reaction of 3,3',5,5'-tetra(4-formylphenyl)-2,2',6,6'-tetramethoxy-1,1'-biphenyl (TFTB) with 3,3',5,5'-tetrakis(4-aminophenyl)bimesityl (TAPB) under different reaction conditions affords single crystals of two 3D COF isomers, namely, USTB-20-dia and USTB-20-qtz. Their structures with resolutions up to 0.9-1.1 Å have been directly solved by three-dimensional electron diffraction (3D ED) and synchrotron single crystal X-ray diffraction, respectively. USTB-20-dia and USTB-20-qtz show rare 2 × 2-fold interpenetrated dia-b nets and 3-fold interpenetrated qtz-b frameworks. Comparative studies of the crystal structures of these COFs and theoretical simulation results indicate the crucial role of the flexible molecular configurations of building blocks in the present interpenetrated topology isomerism. This work not only presents the rare COF isomers but also gains an understanding of the formation of framework isomerism from both single crystal structures and theoretical simulation perspectives.

11.
RSC Adv ; 13(35): 24805-24811, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37608972

RESUMO

Developing novel rainwater energy harvesting beyond conventional electricity is a promising strategy to address the problems of the energy crisis and environmental pollution. In this current work, a class of self-powered PtNi and optimal PtNi-polyaniline (PANI) films are successfully developed to convert rainwater into electricity for power generation. The maximized current, voltage and power of the self-powered PtNi-PANI films are 4.95 µA per droplet, 69.85 µV per droplet and 416.54 pW per droplet, respectively, which are attributed to the charging/discharging electrical signals between the cations provided by the rainwater and the electrons offered by the films. These results indicate that the optimized signal values are highly dependent on the elevated electron concentration of films, as well as the concentration, radius and charge of ions in rainwater. This work provides fresh insights into rain energy and enriches our knowledge of how to convert renewable energy into electricity generation.

12.
Molecules ; 28(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37570688

RESUMO

Seawater electrolysis has great potential to generate clean hydrogen energy, but it is a formidable challenge. In this study, we report CoFe-LDH nanosheet uniformly decorated on a CuO nanowire array on Cu foam (CuO@CoFe-LDH/CF) for seawater oxidation. Such CuO@CoFe-LDH/CF exhibits high oxygen evolution reaction electrocatalytic activity, demanding only an overpotential of 336 mV to generate a current density of 100 mA cm-2 in alkaline seawater. Moreover, it can operate continuously for at least 50 h without obvious activity attenuation.

13.
J Colloid Interface Sci ; 646: 695-702, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37229987

RESUMO

The residual tensile strain, which is induced by lattice and thermal expansion coefficient difference between upper perovskite film and underlying charge transporting layer, significantly deteriorates the power conversion efficiency (PCE) and stability of a halide perovskite solar cell (PSC). To overcome this technical bottleneck, herein, we propose a universal liquid buried interface (LBI) by introducing a low melting-point small molecule to replace traditional solid-solid interface. Arising from the movability upon solid-to-liquid phase conversion, LBI plays a role of "lubricant" to effectively free the soft perovskite lattice shrinkage or expansion rather than anchoring onto the substrate, leading to the reduced defects due to the healing of strained lattice. Finally, the inorganic CsPbIBr2 PSC and CsPbI2Br cell achieve the best PCEs of 11.13 % and 14.05 %, respectively, and the photo-stability is improved by 33.3-fold because of the suppressed halide segregation. This work provides new insights on the LBI for making high-efficiency and stable PSC platforms.

14.
Adv Sci (Weinh) ; 10(22): e2302009, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37246274

RESUMO

The launching of 5G technology provides excellent opportunity for the prosperous development of Internet of Things (IoT) devices and intelligent wireless sensor nodes. However, deploying of tremendous wireless sensor nodes network presents a great challenge to sustainable power supply and self-powered active sensing. Triboelectric nanogenerator (TENG) has shown great capability for powering wireless sensors and work as self-powered sensors since its discovery in 2012. Nevertheless, its inherent property of large internal impedance and pulsed "high-voltage and low-current" output characteristic seriously limit its direct application as stable power supply. Herein, a generic triboelectric sensor module (TSM) is developed toward managing the high output of TENG into signals that can be directly utilized by commercial electronics. Finally, an IoT-based smart switching system is realized by integrating the TSM with a typical vertical contact-separation mode TENG and microcontroller, which is able to monitor the real-time appliance status and location information. Such design of a universal energy solution for triboelectric sensors is applicable for managing and normalizing the wide output range generated from various working modes of TENGs and suitable for facile integration with IoT platform, representing a significant step toward scaling up TENG applications in future smart sensing.

15.
Front Public Health ; 11: 1140786, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36908414

RESUMO

Inflammatory bowel disease (IBD) is becoming increasingly prevalent with the improvement of people's living standards in recent years, especially in urban areas. The emerging environmental contaminant is a newly-proposed concept in the progress of industrialization and modernization, referring to synthetic chemicals that were not noticed or researched before, which may lead to many chronic diseases, including IBD. The emerging contaminants mainly include microplastics, endocrine-disrupting chemicals, chemical herbicides, heavy metals, and persisting organic pollutants. In this review, we summarize the adverse health effect of these emerging contaminants on humans and their relationships with IBD. Therefore, we can better understand the impact of these new emerging contaminants on IBD, minimize their exposures, and lower the future incidence of IBD.


Assuntos
Doenças Inflamatórias Intestinais , Metais Pesados , Humanos , Plásticos , Doenças Inflamatórias Intestinais/etiologia
16.
Proc Natl Acad Sci U S A ; 120(13): e2217208120, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36940337

RESUMO

Intercalation-type layered oxides have been widely explored as cathode materials for aqueous zinc-ion batteries (ZIBs). Although high-rate capability has been achieved based on the pillar effect of various intercalants for widening interlayer space, an in-depth understanding of atomic orbital variations induced by intercalants is still unknown. Herein, we design an NH4+-intercalated vanadium oxide (NH4+-V2O5) for high-rate ZIBs, together with deeply investigating the role of the intercalant in terms of atomic orbital. Besides extended layer spacing, our X-ray spectroscopies reveal that the insertion of NH4+ could promote electron transition to 3dxy state of V t2g orbital in V2O5, which significantly accelerates the electron transfer and Zn-ion migration, further verified by DFT calculations. As results, the NH4+-V2O5 electrode delivers a high capacity of 430.0 mA h g-1 at 0.1 A g-1, especially excellent rate capability (101.0 mA h g-1 at 200 C), enabling fast charging within 18 s. Moreover, the reversible V t2g orbital and lattice space variation during cycling are found via ex-situ soft X-ray absorption spectrum and in-situ synchrotron radiation X-ray diffraction, respectively. This work provides an insight at orbital level in advanced cathode materials.

17.
J Am Chem Soc ; 145(14): 8141-8149, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36989190

RESUMO

Lithium-sulfur batteries (LSBs) have been considered as a promising candidate for next-generation energy storage devices, which however still suffer from the shuttle effect of the intermediate lithium polysulfides (LiPSs). Covalent-organic frameworks (COFs) have exhibited great potential as sulfur hosts for LSBs to solve such a problem. Herein, a pentiptycene-based D2h symmetrical octatopic polyaldehyde, 6,13-dimethoxy-2,3,9,10,18,19,24,25-octa(4'-formylphenyl)pentiptycene (DMOPTP), was prepared and utilized as a building block toward preparing COFs. Condensation of DMOPTP with 4-connected tetrakis(4-aminophenyl)methane affords an expanded [8 + 4] connected network 3D-flu-COF, with a flu topology. The non-interpenetrated nature of the flu topology endows 3D-flu-COF with a high Brunauer-Emmett-Teller surface area of 2860 m2 g-1, large octahedral cavities, and cross-linked tunnels in the framework, enabling a high loading capacity of sulfur (∼70 wt %), strong LiPS adsorption capability, and facile ion diffusion. Remarkably, when used as a sulfur host for LSBs, 3D-flu-COF delivers a high capacity of 1249 mA h g-1 at 0.2 C (1.0 C = 1675 mA g-1), outstanding rate capability (764 mA h g-1 at 5.0 C), and excellent stability, representing one of the best results among the thus far reported COF-based sulfur host materials for LSBs and being competitive with the state-of-the-art inorganic host materials.

18.
ACS Nano ; 16(12): 21152-21162, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36459093

RESUMO

Interface engineering of zinc metal anodes is a promising remedy to relieve their inferior stability caused by dendrite growth and side reactions. Nevertheless, the low affinity and additional weight of the protective coating remain obstacles to their further implementation. Here, aroused by DFT simulation, self-assembled monolayers (SAMs) are selectively constructed to enhance the stability of zinc metal anodes in dilute aqueous electrolytes. It is found that the monolayer thiol molecules relatively prefer to selectively graft onto the unstable zinc crystal facets through strong Zn-S chemical interactions to engineer a covalent interface, enabling the uniform deposition of Zn2+ onto (002) crystal facets. Therefore, dendrite-free anodes with suppressed side reactions can be achieved, proven by in situ optical visualization and differential electrochemical mass spectrometry (DEMS). In particular, the thiol endows the symmetric cells with a 4000 h ultrastable plating/stripping at a specific current density of 1.0 mA cm-2, much superior to those of bare zinc anodes. Additionally, the full battery of modified anodes enables stable cycling of 87.2% capacity retention after 3300 cycles. By selectively capping unstable crystal facets with inert molecules, this work provides a promising design strategy at the molecular level for stable metal anodes.

19.
J Am Chem Soc ; 144(46): 21328-21336, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36350764

RESUMO

Artificial photosynthesis of H2O2 from O2 reduction provides an energy-saving, safe, and green approach. However, it is still critical to develop highly active and selective 2e- oxygen reduction reaction photocatalysts for efficient H2O2 production owing to the unsatisfactory photosynthesis productivity. Herein, two new two-dimensional piperazine-linked CoPc-based covalent organic frameworks (COFs), namely, CoPc-BTM-COF and CoPc-DAB-COF, were afforded from the nucleophilic substitution reaction of hexadecafluorophthalocyaninato cobalt(II) (CoPcF16) with 1,2,4,5-benzenetetramine (BTM) or 3,3'-diaminobenzidine (DAB). Powder X-ray diffraction analysis in combination with electron microscopy and a series of spectroscopic technologies reveals their crystalline porous framework with a fully conjugated structure and eclipsed π-stacking model. Ultraviolet-visible diffuse reflectance absorption spectra unveil their excellent light absorption capacity in a wide range of 400-1000 nm. This, together with their enhanced photo-induced charge separation and transport efficiency as disclosed by photocurrent response and photoluminescence measurements, endows the as-prepared piperazine-linked CoPc-based COFs with superior photocatalytic activity toward O2-to-H2O2 conversion under visible-light irradiation (λ > 400 nm). In particular, CoPc-BTM-COF exhibits a record-high H2O2 yield of 2096 µmol h-1 g-1 among the COF-based photocatalysts and an impressive apparent quantum yield of 7.2% at 630 nm. The present result should be helpful for fabricating high-performance and low-cost photocatalysts for visible-light-driven H2O2 photosynthesis.


Assuntos
Peróxido de Hidrogênio , Luz , Piperazina , Fotossíntese
20.
Adv Mater ; 34(50): e2207245, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36189855

RESUMO

Fully aromatic conjugated covalent organic frameworks (FAC-COFs) with excellent physicochemical stability have been emerging as active semiconductors for diverse potential applications. Developing efficient synthesis methods for fabricating FAC-COFs will significantly facilitate the exploration over their material and photonic/electronic functionalities. Herein, a facile solvent-free strategy is developed for the synthesis of 2D phthalocyanine-based FAC-COFs (FAC-Pc-COFs). Cyclopolymerization of benzo[1,2-b:4,5-b']bis[1,4]benzodioxin-2,3,9,10-tetracarbonitrile (BBTC) and quinoxalino[2',3':9,10]phenanthro[4,5-abc]phenazine-6,7,15,16-tetracarbonitrile (QPPTC) in ZnCl2  leads to the fast formation and isolation of BB-FAC-Pc-COF and QPP-FAC-Pc-COF, respectively. Powder X-ray diffraction and electron microscopy analysis reveal their crystalline nature with sql topology and AA stacking configuration. Thermogravimetric analysis and immersion experiment indicate their excellent stability. The conductivity test demonstrates their high conductivity of 0.93-1.94 × 10-4  S cm-1  owing to the fully π-conjugated electronic structural nature. In particular, the as-prepared FAC-Pc-COFs show high-performance K+ storage in potassium-ion batteries due to their excellent conductivity, highly ordered and robust structure, and N/O-rich framework nature. Impressively, QPP-FAC-Pc-COF shows a large reversible capacity of 424 mA h g-1  after 100 cycles at 50 mA g-1  and a capacity retention of nearly 100% at 2000 mA g-1  for over 10 000 cycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA