Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 464
Filtrar
1.
Int J Nanomedicine ; 19: 8949-8970, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39246424

RESUMO

Introduction: RNA interference (RNAi) stands as a widely employed gene interference technology, with small interfering RNA (siRNA) emerging as a promising tool for cancer treatment. However, the inherent limitations of siRNA, such as easy degradation and low bioavailability, hamper its efficacy in cancer therapy. To address these challenges, this study focused on the development of a nanocarrier system (HLM-N@DOX/R) capable of delivering both siRNA and doxorubicin for the treatment of breast cancer. Methods: The study involved a comprehensive investigation into various characteristics of the nanocarrier, including shape, diameter, Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), encapsulation efficiency, and drug loading. Subsequently, in vitro and in vivo studies were conducted on cytotoxicity, cellular uptake, cellular immunofluorescence, lysosome escape, and mouse tumor models to evaluate the efficacy of the nanocarrier in reversing tumor multidrug resistance and anti-tumor effects. Results: The results showed that HLM-N@DOX/R had a high encapsulation efficiency and drug loading capacity, and exhibited pH/redox dual responsive drug release characteristics. In vitro and in vivo studies showed that HLM-N@DOX/R inhibited the expression of P-gp by 80%, inhibited MDR tumor growth by 71% and eliminated P protein mediated multidrug resistance. Conclusion: In summary, HLM-N holds tremendous potential as an effective and targeted co-delivery system for DOX and P-gp siRNA, offering a promising strategy for overcoming MDR in breast cancer.


Assuntos
Neoplasias da Mama , Doxorrubicina , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Lipossomos , RNA Interferente Pequeno , Animais , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/administração & dosagem , Feminino , Lipossomos/química , Camundongos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/química , RNA Interferente Pequeno/farmacocinética , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Células MCF-7 , Camundongos Endogâmicos BALB C , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Nanopartículas/química , Liberação Controlada de Fármacos , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Materials (Basel) ; 17(17)2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39274594

RESUMO

Stimulus electro-responsive polymer materials can reversibly change their physical or chemical properties under various external stimuli such as temperature, light, force, humidity, pH, and magnetic fields. This review introduces typical conventional stimulus electro-responsive polymer materials and extensively explores novel directions in the field, including multi-stimuli electro-responsive polymer materials and humidity electro-responsive polymer materials pioneered by our research group. Despite significant advancements in stimulus electro-responsive polymer materials, ongoing research focuses on enhancing their efficiency, lifespan, and production costs. Interdisciplinary collaboration and advanced technologies promise to broaden the application scope of these materials, particularly in medical and environmental protection fields, ultimately benefiting society.

3.
Bioorg Chem ; 151: 107691, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39116524

RESUMO

Ten new B-ring aromatized 6/6/6-tricyclic dearomatized benzocogeijerene-based meroterpenoids with unusual methyl 1,2-shift or demethylation (2-9b), and two new geranylquinol derivatives (1 and 10), together with two known compounds (11 and 12), were isolated from the roots of Arnebia euchroma. Their structures were elucidated by extensive spectroscopic methods, X-ray diffraction crystallography, and ECD calculations. The plausible biosynthetic pathways including the unusual methyl 1,2-shfit and demethylation for B-ring aromatized 6/6/6-tricyclic meroterpenoids were discussed. Compounds 1, 2, 5, 6, 11, and 12 showed significant cardioprotective activities comparable to diltiazem against isoprenaline (ISO)-induced H9C2 cell damage in vitro. Compound 11 probably exerted heart-protective effect on ISO-induced H9C2 cells by modulating the PI3K-AKT-mTOR pathway, reducing excessive autophagy, and decreasing myocardial apoptosis.


Assuntos
Apoptose , Autofagia , Boraginaceae , Miócitos Cardíacos , Terpenos , Apoptose/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Autofagia/efeitos dos fármacos , Boraginaceae/química , Ratos , Terpenos/farmacologia , Terpenos/química , Terpenos/isolamento & purificação , Animais , Estrutura Molecular , Relação Estrutura-Atividade , Relação Dose-Resposta a Droga , Insuficiência Cardíaca/tratamento farmacológico , Cardiotônicos/farmacologia , Cardiotônicos/química , Cardiotônicos/isolamento & purificação , Linhagem Celular
4.
J Pharm Biomed Anal ; 251: 116431, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39197208

RESUMO

The assessment of bioactivity for therapeutic antibody release assay poses challenges, particularly when targeting immune checkpoints. An in vitro bioassay platform was developed using the chimeric antigen receptor on Jurkat cells (Jurkat-CAR) to analyze antibodies targeting immune checkpoints, such as CD47/SIRPα, VEGF/VEGFR1, PD-1/PD-L1, and CD70/CD27. For CD47/SIRPα, the platform involved a Jurkat-CAR cell line expressing the chimeric SIRPα receptor (CarSIRPα). CarSIRPα was created by sequentially fusing the SIRPα extracellular region with the CD8α hinge region, the transmembrane (TM) and intracellular (IC) domains of CD28, and the intracellular signaling domain of CD3ζ. The resulting Jurkat-CarSIRPα cells can undergo "activation-induced cell death (AICD)" upon incubation with purified or cellular CD47, as evidenced by the upregulation of CD69, IL-2, and IFN-γ. Similar results also appeared in Jurkat CarVEGFR1, Jurkat CarPD1 and Jurkat CARCD27 cells. These cells are perfectly utilized for the bioactivity analysis of therapeutic antibody. Our study indicates that the established in vitro assay platform based on Jurkat-CAR has been confirmed repeatedly and has shown robust reproducibility; thus, this platform can be used for screening or for release assays of given antibody drugs targeting immune checkpoints.


Assuntos
Bioensaio , Receptores de Antígenos Quiméricos , Humanos , Células Jurkat , Bioensaio/métodos , Receptores Imunológicos/metabolismo , Antígeno CD47/metabolismo , Antígenos CD/imunologia , Interleucina-2 , Interferon gama , Morte Celular/efeitos dos fármacos , Antígenos de Diferenciação
5.
Nat Commun ; 15(1): 7293, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39181900

RESUMO

Nominally anhydrous minerals (NAMs) composing Earth's and planetary rocks incorporate microscopic amounts of volatiles. However, volatile distribution in NAMs and their effect on physical properties of rocks remain controversial. Thus, constraining trace volatile concentrations in NAMs is tantamount to our understanding of the evolution of rocky planets and planetesimals. Here, we present an approach of trace-element quantification using micro-scale Nuclear Magnetic Resonance (NMR) spectroscopy. This approach employs the principle of enhanced mass-sensitivity in NMR microcoils. We were able to demonstrate that this method is in excellent agreement with standard methods across their respective detection capabilities. We show that by simultaneous detection of internal reference nuclei, the quantification sensitivity can be substantially increased, leading to quantifiable trace volatile element amounts of about 50 ng/g measured in a micro-meter sized single anorthitic mineral grain, greatly enhancing detection capabilities of volatiles in geologically important systems.

6.
Cell Death Discov ; 10(1): 389, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39209829

RESUMO

Carboxy-terminal domain small phosphatase like 2 (CTDSPL2), one of the haloacid dehalogenase phosphatases, is associated with several diseases including cancer. However, the role of CTDSPL2 and its regulatory mechanism in lung cancer remain unclear. Here, we aimed to explore the clinical implications, biological functions, and molecular mechanisms of CTDSPL2 in non-small cell lung cancer (NSCLC). CTDSPL2 was identified as a novel target of the tumor suppressor miR-193a-3p. CTDSPL2 expression was significantly elevated in NSCLC tissues. Database analysis showed that CTDSPL2 expression was negatively correlated with patient survival. Depletion of CTDSPL2 inhibited the proliferation, migration, and invasion of NSCLC cells, as well as tumor growth and metastasis in mouse models. Additionally, silencing of CTDSPL2 enhanced CD4+ T cell infiltration into tumors. Moreover, CTDSPL2 interacted with JAK1 and positively regulated JAK1 expression. Subsequent experiments indicated that CTDSPL2 activated the PI3K/AKT signaling pathway through the upregulation of JAK1, thereby promoting the progression of NSCLC. In conclusion, CTDSPL2 may play an oncogenic role in NSCLC progression by activating PI3K/AKT signaling via JAK1. These findings may provide a potential target for the diagnosis and treatment of NSCLC.

7.
Animals (Basel) ; 14(16)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39199949

RESUMO

Aquatic animals frequently undergo feed deprivation and starvation stress. It is well-known that the gut microbiota and the gut-brain short neuropeptide F (sNPF) play essential roles in diet restriction. Therefore, investigating the responses of the gut microbiota and sNPF can enhance our understanding of physiological adaptations to feed deprivation and starvation stress. In this study, we examined the alterations in the gut microbiota of juvenile mud crabs under feed deprivation and starvation conditions. The results reveal differences in the richness and diversity of gut microbiota among the satisfied, half food, and starvation groups. Moreover, the microbial composition was affected by starvation stress, and more than 30 bacterial taxa exhibited significantly different abundances among the three feeding conditions. These results indicate that the diversity and composition of the gut microbiota are influenced by diet restriction, potentially involving interactions with the gut-brain sNPF. Subsequently, we detected the location of sNPF in the brains and guts of mud crabs through immunofluorescence and investigated the expression profile of sNPF under different feeding conditions. The results suggest that sNPF is located in both the brains and guts of mud crabs and shows increased expression levels among different degrees of diet restriction during a 96 h period. This study suggested a potential role for sNPF in regulating digestive activities and immunity through interactions with the gut microbiota. In conclusion, these findings significantly contribute to our understanding of the dynamic changes in gut microbiota and sNPF, highlighting their interplay in response to diet restriction.

8.
Cell Death Dis ; 15(7): 502, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003255

RESUMO

Dysfunction of the ubiquitin-proteasome system (UPS) is involved in the pathogenesis of various malignancies including colorectal cancer (CRC). Ubiquitin domain containing 1 (UBTD1), a ubiquitin-like protein, regulates UPS-mediated protein degradation and tumor progression in some cancer types. However, the biological function and mechanism of UBTD1 are far from being well elucidated, and its role in CRC has not been explored yet. In our study, we analyzed CRC patients' clinical information and UBTD1 expression data, and found that the expression of UBTD1 in cancer tissue was significantly higher than that in adjacent normal tissue. Higher UBTD1 expression was significantly associated with poorer survival and more lymph node metastasis. Overexpression of UBTD1 could facilitate, while knockdown could inhibit CRC cell proliferation and migration, respectively. RNA-seq and proteomics indicated that c-Myc is an important downstream target of UBTD1. Metabolomics showed the products of the glycolysis pathway were significantly increased in UBTD1 overexpression cells. In vitro, we verified UBTD1 upregulating c-Myc protein and promoting CRC cell proliferation and migration via regulating c-Myc. UBTD1 promoted CRC cells' glycolysis, evidenced by the increased lactate production and glucose uptake following UBTD1 overexpression. Mechanistically, UBTD1 prolonged the half-life of the c-Myc protein by binding to E3 ligase ß-transducin repeat-containing protein (ß-TrCP), thereby upregulated the expression of glycolysis rate-limiting enzyme hexokinase II (HK2), and enhanced glycolysis and promoted CRC progression. In conclusion, our study revealed that UBTD1 promotes CRC progression by upregulating glycolysis via the ß-TrCP/c-Myc/HK2 pathway, suggesting its potential as a prognostic biomarker and therapeutic target in CRC.


Assuntos
Proliferação de Células , Neoplasias Colorretais , Progressão da Doença , Glicólise , Proteínas Proto-Oncogênicas c-myc , Regulação para Cima , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Linhagem Celular Tumoral , Movimento Celular , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Hexoquinase/metabolismo , Hexoquinase/genética , Camundongos Nus , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Ubiquitinas/metabolismo , Ubiquitinas/genética
9.
Front Immunol ; 15: 1398508, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983860

RESUMO

Background: CD38 and CD47 are expressed in many hematologic malignancies, including multiple myeloma (MM), B-cell non-Hodgkin lymphoma (NHL), B-cell acute lymphoblastic leukemia (ALL), and B-cell chronic lymphocytic leukemia (CLL). Here, we evaluated the antitumor activities of CD38/CD47 bispecific antibodies (BsAbs). Methods: Five suitable anti-CD38 antibodies for co-targeting CD47 and CD38 BsAb were developed using a 2 + 2 "mAb-trap" platform. The activity characteristics of the CD38/CD47 BsAbs were evaluated using in vitro and in vivo systems. Results: Using hybridoma screening technology, we obtained nine suitable anti-CD38 antibodies. All anti-CD38 antibodies bind to CD38+ tumor cells and kill tumor cells via antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). Five anti-CD38 antibodies (4A8, 12C10, 26B4, 35G5, and 65A7) were selected for designing CD38/CD47 BsAbs (IMM5605) using a "mAb-trap" platform. BsAbs had higher affinity and binding activity to the CD38 target than those to the CD47 target, decreasing the potential on-target potential and off-tumor effects. The CD38/CD47 BsAbs did not bind to RBCs and did not induce RBC agglutination; thus, BsAbs had much lower blood toxicity. The CD38/CD47 BsAbs had a greater ability to block the CD47/SIRPα signal in CD38+/CD47+ tumor cells than IMM01 (SIRPα Fc fusion protein). Through Fc domain engineering, CD38/CD47 BsAbs were shown to kill tumors more effectively by inducing ADCC and ADCP. IMM5605-26B4 had the strongest inhibitory effect on cellular CD38 enzymatic activity. IMM5605-12C10 had the strongest ability to directly induce the apoptosis of tumor cells. The anti-CD38 antibody 26B4 combined with the SIRPα-Fc fusion proteins showed strong antitumor effects, which were better than any of the mono-therapeutic agents used alone in the NCI-H929 cell xenograft model. The CD38/CD47 BsAbs exhibited strong antitumor effects; specifically, IMM5605-12C10 efficiently eradicated all established tumors in all mice. Conclusion: A panel of BsAbs targeting CD38 and CD47 developed based on the "mAb-tarp" platform showed potent tumor-killing ability in vitro and in vivo. As BsAbs had lower affinity for binding to CD47, higher affinity for binding to CD38, no affinity for binding to RBCs, and did not induce RBC agglutination, we concluded that CD38/CD47 BsAbs are safe and have a satisfactory tolerability profile.


Assuntos
ADP-Ribosil Ciclase 1 , Antígeno CD47 , Neoplasias Hematológicas , Antígeno CD47/imunologia , Antígeno CD47/antagonistas & inibidores , Antígeno CD47/metabolismo , ADP-Ribosil Ciclase 1/antagonistas & inibidores , ADP-Ribosil Ciclase 1/imunologia , ADP-Ribosil Ciclase 1/metabolismo , Humanos , Animais , Camundongos , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/imunologia , Linhagem Celular Tumoral , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/antagonistas & inibidores , Citotoxicidade Celular Dependente de Anticorpos , Feminino , Antineoplásicos Imunológicos/farmacologia
10.
J Pathol Clin Res ; 10(4): e12390, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38992928

RESUMO

Oxidative stress and the immune microenvironment both contribute to the pathogenesis of esophageal squamous cell carcinoma (ESCC). However, their interrelationships remain poorly understood. We aimed to examine the status of key molecules involved in oxidative stress and the immune microenvironment, as well as their relationships with each other and with clinicopathological features and prognosis in ESCC. The expression of programmed death-ligand 1 (PD-L1), CD8, nuclear factor erythroid-2 related factor-2 (NRF2), and NAD(P)H quinone oxidoreductase 1 (NQO1) was detected using immunohistochemistry in tissue samples from 176 patients with ESCC. We employed both combined positive score (CPS) and tumor proportion score (TPS) to evaluate PD-L1 expression and found a positive correlation between CPS and TPS. Notably, PD-L1 expression, as assessed by either CPS or TPS, was positively correlated with both NRF2 nuclear score and NQO1 score in stage II-IV ESCC. We also observed a positive correlation between the density of CD8+ T cells and PD-L1 expression. Furthermore, high levels of PD-L1 CPS, but not TPS, were associated with advanced TNM stage and lymph node metastases. Moreover, both PD-L1 CPS and the nuclear expression of NRF2 were found to be predictive of shorter overall survival in stage II-IV ESCC. By using the Mandard-tumor regression grading (TRG) system to evaluate the pathological response of tumors to neoadjuvant chemotherapy (NACT), we found that the TRG-5 group had higher NRF2 nuclear score, PD-L1 CPS, and TPS in pre-NACT biopsy samples compared with the TRG-3 + 4 group. The NQO1 scores of post-NACT surgical specimens were significantly higher in the TRG-5 group than in the TRG 3 + 4 group. In conclusion, the expression of PD-L1 is associated with aberrant NRF2 signaling pathway, advanced TNM stage, lymph node metastases, and unfavorable prognosis. The dysregulation of PD-L1 and aberrant activation of the NRF2 signaling pathway are implicated in resistance to NACT. Our findings shed light on the complex interrelationships between oxidative stress and the immune microenvironment in ESCC, which may have implications for personalized therapies and improved patient outcomes.


Assuntos
Antígeno B7-H1 , Linfócitos T CD8-Positivos , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , NAD(P)H Desidrogenase (Quinona) , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Microambiente Tumoral , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Antígeno B7-H1/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , Masculino , Feminino , Linfócitos T CD8-Positivos/patologia , Linfócitos T CD8-Positivos/metabolismo , Pessoa de Meia-Idade , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/imunologia , Carcinoma de Células Escamosas do Esôfago/mortalidade , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/mortalidade , Idoso , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Adulto , Estadiamento de Neoplasias , Linfócitos do Interstício Tumoral/patologia , Linfócitos do Interstício Tumoral/imunologia , Prognóstico , Imuno-Histoquímica
11.
Sci Rep ; 14(1): 17062, 2024 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048584

RESUMO

The Qinghai-Tibet Plateau is a valuable genetic resource pool, and the high-altitude adaptation of Tibetan pigs is a classic example of the adaptive evolution of domestic animals. Here, we report the presence of Darwinian positive selection signatures in Tibetan pigs (TBPs) using 348 genome-wide datasets (127 whole-genome sequence datasets (WGSs) and 221 whole-genome single-nucleotide polymorphism (SNP) chip datasets). We characterized a high-confidence list of genetic signatures related response to high-altitude adaptation in Tibetan pigs, including 4,598 candidate SNPs and 131 candidate genes. Functional annotation and enrichment analysis revealed that 131 candidate genes are related to multiple systems and organs in Tibetan pigs. Notably, eight of the top ten novel genes, RALB, NBEA, LIFR, CLEC17A, PRIM2, CDH7, GK5 and FAM83B, were highlighted and associated with improved adaptive heart functions in Tibetan pigs high-altitude adaptation. Moreover, genome-wide association analysis revealed that 29 SNPs were involved in 13 candidate genes associated with at least one adaptive trait. In particular, among the top ten candidate genes, CLEC17A is related to a reduction in hemoglobin (HGB) in Tibetan pigs. Overall, our study provides a robust SNP/gene list involving genetic adaptation for Tibetan pig high-altitude adaptation, and it will be a valuable resource for future Tibetan pig studies.


Assuntos
Altitude , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Seleção Genética , Animais , Tibet , Suínos/genética , Adaptação Fisiológica/genética , Genoma , Sequenciamento Completo do Genoma
12.
Bioorg Chem ; 151: 107618, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39003940

RESUMO

An unprecedented spiro-C-glycoside adduct, heteryunine A (1), along with two uncommon alkaloids featuring a 2,3-diketopiperazine skeleton, heterpyrazines A (2) and B (3), were discovered in the roots of Heterosmilax yunnanensis. The detailed spectroscopic analysis helped to clarify the planar structures of these compounds. Compound 1, containing 7 chiral centers, features a catechin fused with a spiroketal and connects with a tryptophan derivative by a CC bond. Its complex absolute configuration was elucidated by rotating frame overhauser enhancement spectroscopy (ROESY), specific rotation, and the 13C nuclear magnetic resonance (NMR) and electronic circular dichroism (ECD) calculation. The possible biosynthetic routes for 1 were deduced. Compounds 1 and 2 showed significant antifibrotic effects and further research revealed that they inhibited the activation, migration and proliferation of hepatic stellate cells (HSCs) through suppressing the activity of Ras homolog family member A (RhoA).


Assuntos
Catequina , Proliferação de Células , Triptofano , Catequina/química , Catequina/farmacologia , Catequina/isolamento & purificação , Triptofano/química , Triptofano/farmacologia , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Relação Estrutura-Atividade , Antifibróticos/farmacologia , Antifibróticos/química , Antifibróticos/isolamento & purificação , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Relação Dose-Resposta a Droga , Movimento Celular/efeitos dos fármacos , Animais , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Humanos , Raízes de Plantas/química
13.
J Periodontol ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967396

RESUMO

BACKGROUND: The aryl hydrocarbon receptor (AhR) has been studied as an intracellular pattern recognition receptor that can identify bacterial pigments. To identify a potential therapeutic target for periodontitis, we investigated the expression of AhR in periodontitis and its role in the pathogenesis of periodontitis. METHODS: First, we analyzed AhR expression in a single-cell dataset from human periodontal tissue. Quantitative polymerase chain reaction (qPCR), immunofluorescence, and immunohistochemistry were used to verify the AhR level. Later, we determined the phenotypes of ligature-induced periodontitis in myeloid-specific AhR-deficient mice (Lyz2-Cre+/- AhRfx/fx), after which RNA sequencing (RNA-seq), qPCR, Western blot, immunofluorescence, and immunohistochemistry were used to investigate the impacts of AhR on periodontitis and its mechanism. Finally, we determined the therapeutic effect of AhR agonist 6-Formylindolo[3,2-b]carbazole (FICZ) administration on murine periodontitis and verified the effects of FICZ on macrophage polarization in vitro. RESULTS: AhR expression was enhanced in macrophages from periodontitis patients. Deletion of AhR from macrophages aggravated ligature-induced periodontitis and promoted the inflammatory response. Calcium/calmodulin-stimulated protein kinase II (CaMKII) phosphorylation was accelerated in AhR-deficient macrophages. Inhibiting CaMKII phosphorylation ameliorated periodontitis in Lyz2-Cre+/- AhRfx/fx mice. FICZ treatment blocked alveolar bone loss and relieved periodontal inflammation. FICZ diminished M1 macrophage polarization and promoted M2 macrophage polarization upon M1 macrophage induction. CONCLUSION: AhR played a protective role in the pathogenesis of periodontitis by orchestrating macrophage polarization via interacting with the CaMKII signaling pathway.

14.
J Asian Nat Prod Res ; : 1-8, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38973288

RESUMO

Two new cucurbitane-type triterpenoid saponins, 2,20ß,22ß-trihydroxy-16α,23(R)-epoxycucurbita-1,5,24-triene-3,11-dione 2-O-ß-D-glucopyranoside (1), 2,20ß,22α-trihydroxy-16α,23(S)-epoxycucurbita-1,5,11,24-tetraene-3-one 2-O-ß-D-glucopyranoside (2) were isolated from the fruit of Citrullus colocynthis (L.) Schrad. Their structures were elucidated by mass spectrometry, IR, 1D, and 2D NMR spectroscopy, etc. Besides, both of the compounds showed significant hepatoprotective activities at 10 µM against paracetamol-induced HepG2 cell damage.

15.
Acta Pharm Sin B ; 14(7): 3125-3139, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39027250

RESUMO

Zhigancao decoction is a traditional prescription for treating irregular pulse and palpitations in China. As the monarch drug of Zhigancao decoction, the bioactive molecules of licorice against heart diseases remain elusive. We established the HRESIMS-guided method leading to the isolation of three novel bicyclic peptides, glycnsisitins A-C (1-3), with distinctive C-C and C-O-C side-chain-to-side-chain linkages from the roots of Glycyrrhiza uralensis (Licorice). Glycnsisitin A demonstrated stronger cardioprotective activity than glycnsisitins B and C in an in vitro model of doxorubicin (DOX)-induced cardiomyocyte injury. Glycnsisitin A treatment not only reduced the mortality of heart failure (HF) mice in a dose-dependent manner but also significantly attenuated DOX-induced cardiac dysfunction and myocardial fibrosis. Gene set enrichment analysis (GSEA) of the differentially expressed genes indicated that the cardioprotective effect of glycnsisitin A was mainly attributed to its ability to maintain iron homeostasis in the myocardium. Mechanistically, glycnsisitin A interacted with transferrin and facilitated its binding to the transferrin receptor (TFRC), which caused increased uptake of iron in cardiomyocytes. These findings highlight the key role of bicyclic peptides as bioactive molecules of Zhigancao decoction for the treatment of HF, and glycnsisitin A constitutes a promising therapeutic agent for the treatment of HF.

16.
Nicotine Tob Res ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028556

RESUMO

INTRODUCTION: Smoking is one of the most important predisposing factors of intestinal inflammatory diseases. Heated tobacco product (HTP) is a novel tobacco category that is claimed to deliver reduced chemicals to human those reported in combustible cigarette smoke (CS). However, the effect of HTP on intestine is still unknown. METHODS: In the framework of Organization for Economic Co-operation and Development guidelines 413 guidelines, Sprague-Dawley rats were exposed to HTP aerosol and CS for 13 weeks. The atmosphere was characterized and oxidative stress and inflammation of intestine were investigated after exposure. Furthermore, the faeces we performed with 16S sequencing and metabolomics analysis. RESULTS: HTP aerosol and CS led to obvious intestinal damage evidenced by increased intestinal pro-inflammatory cytokines and oxidative stress in male and female rats After HTP and CS exposure, the abundance that obviously changed were Lactobacillus and Turiciacter in male rats and Lactobacillus and Prevotella in female rats. HTP mainly induced the metabolism of amino acids and fatty acyls such as short-chain fatty acids and tryptophan, while CS involved into the main metabolism of bile acids, especially indole and derivatives. Although different metabolic pathways in the gut mediated by HTP and CS, both to inflammation and oxidative stress were ultimately induced. CONCLUSIONS: HTP aerosol and CS induced intestinal damage mediated by different gut microbiota and metabolites, while both lead to inflammation and oxidative stress. IMPLICATIONS: The concentration of various harmful components in heated tobacco product aerosol is reported lower than that of traditional cigarette smoke, however, its health risk impact on consumers remains to be studied. Our research findings indicate that heated tobacco product and cigarette smoke inhalation induced intestinal damage through different metabolic pathways mediated by gut microbiome, indicating the health risk of heated tobacco product in intestine.

17.
J Integr Med ; 22(4): 413-444, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38937158

RESUMO

The property theory of traditional Chinese medicine (TCM) has been practiced for thousands of years, playing a pivotal role in the clinical application of TCM. While advancements in energy metabolism, chemical composition analysis, machine learning, ion current modeling, and supercritical fluid technology have provided valuable insight into how aspects of TCM property theory may be measured, these studies only capture specific aspects of TCM property theory in isolation, overlooking the holistic perspective inherent in TCM. To systematically investigate the modern interpretation of the TCM property theory from multidimensional perspectives, we consulted the Chinese Pharmacopoeia (2020 edition) to compile a list of Chinese materia medica (CMM). Then, using the Latin names of each CMM and gut microbiota as keywords, we searched the PubMed database for relevant research on gut microbiota and CMM. The regulatory patterns of different herbs on gut microbiota were then summarized from the perspectives of the four natures, the five flavors and the meridian tropism. In terms of the four natures, we found that warm-natured medicines promoted the colonization of specific beneficial bacteria, while cold-natured medicines boosted populations of some beneficial bacteria while suppressing pathogenic bacteria. Analysis of the five flavors revealed that sweet-flavored and bitter-flavored CMMs positively influenced beneficial bacteria while inhibiting harmful bacteria. CMMs with different meridian tropism exhibited complex modulative patterns on gut microbiota, with Jueyin (Liver) and Taiyin (Lung) meridian CMMs generally exerting a stronger effect. The gut microbiota may be a biological indicator for characterizing the TCM property theory, which not only enhances our understanding of classic TCM theory but also contributes to its scientific advancement and application in healthcare. Please cite this article as: Yang YN, Zhan JG, Cao Y, Wu CM. From ancient wisdom to modern science: Gut microbiota sheds light on property theory of traditional Chinese medicine. J Integr Med 2024; 22(4): 413-445.


Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Medicina Tradicional Chinesa , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Materia Medica , Meridianos
18.
Neurosci Bull ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874677

RESUMO

Preeclampsia is a serious obstetric complication. Currently, there is a lack of effective preventive approaches for this disease. Recent studies have identified transcutaneous auricular vagus nerve stimulation (taVNS) as a potential novel non-pharmaceutical therapeutic modality for preeclampsia. In this study, we investigated whether taVNS inhibits apoptosis of placental trophoblastic cells through ROS-induced UPRmt. Our results showed that taVNS promoted the release of acetylcholine (ACh). ACh decreased the expression of UPRmt by inhibiting the formation of mitochondrial ROS (mtROS), presumably through M3AChR. This reduced the release of pro-apoptotic proteins (cleaved caspase-3, NF-κB-p65, and cytochrome C) and helped preserve the morphological and functional integrity of mitochondria, thus reducing the apoptosis of placental trophoblasts, improving placental function, and relieving preeclampsia. Our study unravels the potential pathophysiological mechanism of preeclampsia. In-depth characterization of the UPRmt is essential for developing more effective therapeutic strategies for preeclampsia targeting mitochondrial function.

19.
Imeta ; 3(2): e180, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38882491

RESUMO

Inflammatory bowel disease (IBD) is a significant global health concern. The gut microbiota plays an essential role in the onset and development of IBD. Sanghuangporus (SH), a traditional Chinese medicinal mushroom, has excellent anti-inflammatory effects and is effective at modulating the gut microbiota. Despite these attributes, the specific anticolitic effects of SH and the mechanisms through which the gut microbiota mediates its benefits remain unclear. Herein, we demonstrated that polyphenol-rich extract from SH effectively alleviated the pathological symptoms of dextran sodium sulfate (DSS)-induced colitis in mice by modulating the gut microbiota. Treatment with SH distinctly enriched Alistipes, especially Alistipes onderdonkii, and its metabolite 5-hydroxyindole-3-acetic acid (5HIAA). Oral gavage of live A. onderdonkii or 5HIAA potently mitigated DSS-induced colitis in mice. Moreover, both 5HIAA and SH significantly activated the aromatic hydrocarbon receptor (AhR), and the administration of an AhR antagonist abrogated their protective effects against colitis. These results underscore the potent efficacy of SH in diminishing DSS-induced colitis through the promotion of A. onderdonkii and 5HIAA, ultimately activating AhR signaling. This study unveils potential avenues for developing therapeutic strategies for colitis based on the interplay between SH and the gut microbiota.

20.
J Asian Nat Prod Res ; : 1-6, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860491

RESUMO

Three new flavonoids including two isoflavanones sophortones A and B (1 and 2), and one chalcone sophortone C (3) were isolated from the roots of Sophora tonkinensis. Their structures were established by UV, IR, HRESIMS, and NMR data. The absolute configurations of 1 and 2 were determined by electronic circular dichroism (ECD) calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA