Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Foods ; 13(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38472841

RESUMO

Aroma is an indispensable factor that substantially impacts the quality assessment of black tea. This study aims to uncover the dynamic alterations in the sweet and floral aroma black tea (SFABT) throughout various manufacturing stages using a comprehensive analytical approach integrating gas chromatography electronic nose, gas chromatography-ion mobility spectrometry (GC-IMS), and gas chromatography-mass spectrometry (GC-MS). Notable alterations in volatile components were discerned during processing, predominantly during the rolling stage. A total of 59 typical volatile compounds were identified through GC-IMS, whereas 106 volatile components were recognized via GC-MS throughout the entire manufacturing process. Among them, 14 volatile compounds, such as linalool, ß-ionone, dimethyl sulfide, and 1-octen-3-ol, stood out as characteristic components responsible for SFABT with relative odor activity values exceeding one. This study serves as an invaluable theoretical platform for strategic controllable processing of superior-quality black tea.

2.
Am J Hum Genet ; 111(3): 473-486, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38354736

RESUMO

Disease-associated variants identified from genome-wide association studies (GWASs) frequently map to non-coding areas of the genome such as introns and intergenic regions. An exclusive reliance on gene-agnostic methods of genomic investigation could limit the identification of relevant genes associated with polygenic diseases such as Alzheimer disease (AD). To overcome such potential restriction, we developed a gene-constrained analytical method that considers only moderate- and high-risk variants that affect gene coding sequences. We report here the application of this approach to publicly available datasets containing 181,388 individuals without and with AD and the resulting identification of 660 genes potentially linked to the higher AD prevalence among Africans/African Americans. By integration with transcriptome analysis of 23 brain regions from 2,728 AD case-control samples, we concentrated on nine genes that potentially enhance the risk of AD: AACS, GNB5, GNS, HIPK3, MED13, SHC2, SLC22A5, VPS35, and ZNF398. GNB5, the fifth member of the heterotrimeric G protein beta family encoding Gß5, is primarily expressed in neurons and is essential for normal neuronal development in mouse brain. Homozygous or compound heterozygous loss of function of GNB5 in humans has previously been associated with a syndrome of developmental delay, cognitive impairment, and cardiac arrhythmia. In validation experiments, we confirmed that Gnb5 heterozygosity enhanced the formation of both amyloid plaques and neurofibrillary tangles in the brains of AD model mice. These results suggest that gene-constrained analysis can complement the power of GWASs in the identification of AD-associated genes and may be more broadly applicable to other polygenic diseases.


Assuntos
Doença de Alzheimer , Subunidades beta da Proteína de Ligação ao GTP , Camundongos , Humanos , Animais , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Estudo de Associação Genômica Ampla , Emaranhados Neurofibrilares/metabolismo , Fenótipo , Genômica , Peptídeos beta-Amiloides/genética , Encéfalo/metabolismo , Membro 5 da Família 22 de Carreadores de Soluto/genética , Membro 5 da Família 22 de Carreadores de Soluto/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/metabolismo
3.
Data Brief ; 53: 110183, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38406249

RESUMO

DNA-dependent protein kinase catalytic subunit (DNA-PK) is a multifunctional serine­threonine protein kinase that plays roles in non-homologous end joining of DNA repair in cells. NU7441 is a specific DNA-PKcs inhibitor. We investigated the effects of NU7441 on the transcriptome of BT549 triple negative breast cancer cells. Total RNA extracted from NU7441-treated or control BT549 cells was processed for preparation of sequencing libraries. Assessment of read quality was performed using fastqc tool. Trimming and filtering low-quality reads were performed using fastp. Reads were aligned by hisat2. SAM files were converted to BAM files using Samtools. The gene differential expression analysis, Gene Ontology (GO) analysis and KEGG pathway analysis were performed. After NU7441 treatment, total number of 2045 differential genes were selected according to |log2(FoldChange)| >= 1 & padj<= 0.05, among which 1365 genes were down-regulated and 680 genes were up-regulated. The differential expression genes in pattern recognition receptors (PRRs) immune responses signals, including NOD-like receptor signaling, Toll-like receptor signaling, RIG-I-like receptor signaling and cytosolic DNA-sensing pathways were noted in this paper.

4.
Sci Adv ; 10(7): eadk7488, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363835

RESUMO

Real-time in situ monitoring of plant physiology is essential for establishing a phenotyping platform for precision agriculture. A key enabler for this monitoring is a device that can be noninvasively attached to plants and transduce their physiological status into digital data. Here, we report an all-organic transparent plant e-skin by micropatterning poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) on polydimethylsiloxane (PDMS) substrate. This plant e-skin is optically and mechanically invisible to plants with no observable adverse effects to plant health. We demonstrate the capabilities of our plant e-skins as strain and temperature sensors, with the application to Brassica rapa leaves for collecting corresponding parameters under normal and abiotic stress conditions. Strains imposed on the leaf surface during growth as well as diurnal fluctuation of surface temperature were captured. We further present a digital-twin interface to visualize real-time plant surface environment, providing an intuitive and vivid platform for plant phenotyping.


Assuntos
Fenômenos Fisiológicos Vegetais , Plantas , Folhas de Planta , Pele
5.
J Fungi (Basel) ; 9(9)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37755038

RESUMO

Geotrichum citri-aurantii (G. citri-aurantii) is one of the most important postharvest pathogens leading to a postharvest loss of citrus by causing sour rot. In this study, the antifungal activity of trans-2-hexenal, a natural component of essential oil, against G. citri-aurantii was evaluated. Trans-2-hexenal treatment inhibited the mycelia growth of G. citri-aurantii with a minimum inhibitory concentration and minimum fungicidal concentration of trans-2-hexenal at 0.50 and 1.00 µL/mL, respectively. Moreover, trans-2-hexenal efficiently reduced the incidence of sour rot of Satsuma fruit inoculated with G. citri-aurantii. Ultrastructural observations and Fourier transform infrared (FT-IR) results showed that trans-2-hexenal treatment affected the cell wall and cell membrane instructions of G. citri-aurantii. The content of ß-1,3-glucan was significantly decreased after trans-2-hexenal treatment, but the cell wall permeability was not changed. The decrease in lipid and ergosterol contents might be responsible for this antifungal activity. Several important genes, FKS1, ERG1, ERG7, and ERG11, showed decreasing expression levels after trans-2-hexenal treatment. Molecule-docking results also indicated that trans-2-hexenal could join with the protein of FKS1, ERG1, ERG7, and ERG11 to impact enzyme activities. These results demonstrated that trans-2-hexenal is a promising fungicide for controlling sour rot of harvested citrus fruit by damaging the membrane integrity of G. citri-aurantii.

6.
Food Chem ; 427: 136641, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37393635

RESUMO

To characterize the key odorants of floral aroma green tea (FAGT) and reveal its dynamic evolution during processing, the volatile metabolites in FAGT during the whole processing were analyzed by integrated volatolomics techniques, relative odor activity value (rOAV), aroma recombination, and multivariate statistical analysis. The volatile profiles undergone significant changes during processing, especially in the withering and fixation stages. A total of 184 volatile compounds were identified (∼53.26% by GC-MS). Among them, 7 volatiles with rOAV > 1 were identified as characteristic odorants of FAGT, and most of these compounds reached the highest in withering stage. According to the formation pathways, these key odorants could be divided into four categories: fatty acid-derived volatiles, glycoside-derived volatiles, amino acid-derived volatiles, and carotenoid-derived volatiles. Our study provides a comprehensive strategy to elucidate changes in volatile profiles during processing and lays a theoretical foundation for the targeted processing of high-quality green tea.


Assuntos
Chá , Compostos Orgânicos Voláteis , Odorantes/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Nariz Eletrônico , Compostos Orgânicos Voláteis/análise
7.
Food Chem X ; 18: 100693, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37397226

RESUMO

Storage time is one of the important factors affecting the aroma quality of Pu-erh tea. In this study, the dynamic changes of volatile profiles of Pu-erh teas stored for different years were investigated by combining gas chromatography electronic nose (GC-E-Nose), gas chromatography-mass spectrometry (GC-MS), and gas chromatography-ion mobility spectrometry (GC-IMS). GC-E-Nose combined with partial least squares-discriminant analysis (PLS-DA) realized the rapid discrimination of Pu-erh tea with different storage time (R2Y = 0.992, Q2 = 0.968). There were 43 and 91 volatile compounds identified by GC-MS and GC-IMS, respectively. A satisfactory discrimination (R2Y = 0.991, and Q2 = 0.966) was achieved by using PLS-DA based on the volatile fingerprints of GC-IMS. Moreover, according to the multivariate analysis of VIP > 1.2 and univariate analysis of p < 0.05, 9 volatile components such as linalool and (E)-2-hexenal were selected as key variables to distinguish Pu-erh teas with different storage years. The results provide theoretical support for the quality control of Pu-erh tea.

8.
Chemistry ; 29(23): e202300052, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36752160

RESUMO

Benzyl alcohol (BnOH) is a widely-used preservative in a variety of cosmetics, but the excess addition (≥1.0 %) may cause strong symptoms such as nausea, gastrointestinal irritation, convulsion, even death, making it crucial to monitor and control the addition quantity. Herein, we have developed a test-strip-like BnOH detection method via tailoring a galactose oxidase (GOase) towards BnOH oxidation and preparing a self-powered electrochromic strip for BnOH concentration visualization. A double-substituted GOase variant (Y329S/R330F), on the basis of the reported GOase M1 , has been obtained by semi-rational design with a 24.6-fold improved activity towards BnOH compared to GOase M1 . The GOase Y329S/R330F electrode has a response to BnOH with a linear range of 0.04 to 3.25 mM (R2 =0.9985), a sensitivity of 122.78 µA mM-1 cm-2 , and a detection limit of 0.03 mM (S/N=3). Coupling an electrochromic Prussian blue (PB) cathode helps the successful sensing visualization without any further power supply. The present sensing is more convenient and user-friendly than the generally used gas chromatography (GC) and high performance liquid chromatography (HPLC), and brings a more accessible solution to the field of quality controlling.


Assuntos
Álcool Benzílico , Galactose Oxidase , Galactose Oxidase/química , Oxirredução , Fontes de Energia Elétrica , Eletrodos
10.
Hum Mol Genet ; 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36255737

RESUMO

How ancestry-associated genetic variance affects disparities in the risk for polygenic diseases and influences the identification of disease-associated genes warrant a deeper understanding. We hypothesized that the discovery of genes associated with polygenic diseases may be limited by overreliance on single-nucleotide polymorphism (SNP)-based genomic investigation, since most significant variants identified in genome-wide SNP association studies map to introns and intergenic regions of the genome. To overcome such potential limitation, we developed a gene-constrained and function-based analytical method centered on high-risk variants (hrV) that encode frameshifts, stopgains, or splice site disruption. We analyzed the total number of hrV per gene in populations of different ancestry, representing a total of 185 934 subjects. Using this analysis, we developed a quantitative index of hrV (hrVI) across 20 428 genes within each population. We then applied hrVI analysis to the discovery of genes associated with type 2 diabetes mellitus (T2DM), a polygenic disease with ancestry-related disparity. HrVI profiling and gene-to-gene comparisons of ancestry-specific hrV between the case (20 781 subjects) and control (24 440 subjects) populations in the T2DM national repository identified 57 genes associated with T2DM, 40 of which were discoverable only by ancestry-specific analysis. These results illustrate how function-based and ancestry-specific analysis of genetic variations can accelerate the identification of genes associated with polygenic diseases. Besides T2DM, such analysis may facilitate our understanding of the genetic basis for other polygenic diseases that are also greatly influenced by environmental and behavioral factors, such as obesity, hypertension, and Alzheimer's disease.

11.
Chemosphere ; 307(Pt 2): 135828, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35944690

RESUMO

Biofilter systems coupling with microbial electrochemical technology can enhance the removal performance of pollutants. In this study, two types of coke (PK-A and PK-LSN) were used as electroconductive substrates in biofilter systems with silicone tubings. The results showed that the silicone tubings were beneficial for removing NH4+-N. The PK-A systems reached removal efficiencies up to 83.5-85.3% for NH4+-N without aeration. Compared to gravel systems, significantly higher removal efficiencies of NO3--N (84.8-95.4%) were obtained in coke systems, and better removal of PO43--P (91.9-95.7%) was also simultaneously achieved in PK-A systems. Redundancy analysis (RDA) indicated that the better performances of coke systems rely on the functions of both electroactive (Trichococcus and Sulfurovum) and non-electroactive bacteria (Clostridium_sensu_stricto_1, Propionicicella, and Acinetobacter). These findings highlight the important contribution of silicone tubings to oxygen supply and provide useful guidance for the application of coke in composite matrix systems.


Assuntos
Coque , Poluentes Ambientais , Microbiota , Nitrogênio , Oxigênio , Silicones
12.
J Colloid Interface Sci ; 628(Pt A): 1012-1022, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35970127

RESUMO

Development of efficient lithium-sulfur (Li-S) battery requires the need to develop an appropriate functional separator that allows strong facilitation and transport of lithium ions together with limited passage of polysulfides. In this work, a multifunctional separator (TB-BAA/SWCNT/PP) is developed through spin coating of a novel zwitterionic microporous polymer (TB-BAA) on the gutter layer constructed from single-walled carbon nanotubes (SWCNT), where commercially available polypropylene (PP) separator is used to act as the mechanical support. SWCNT in this study serves as the first modification layer to decrease the size of the macropores in the PP separator, while the ultrathin TB-BAA top barrier layer with the presence of zwitterionic side chains allows the creation of confined ionic channels with both lithiophilic and sulfophilic groups. Due to the presence of available chemical interactions with lithium polysulfides, selective ion transport can be foreseen through such separator. In this regard, shuttle effect that is frequently encountered in Li-S battery can be suppressed effectively via implementing the as-obtained functional separator, resulting in the creation of credible and stable sulfur electrochemistry. The TB-BAA/SWCNT/PP-based Li-S battery has been investigated to possess high cycling ability (capacity fading per cycle of 0.055% over 500 cycles at 1 C) together with decent rate capability (736.6 mAh g-1 at 3 C). In addition, a high areal capacity retention of 5.03 mAh cm-2 after 50 cycles can be also obtained under raised sulfur loading (5.4 mg cm-2).

13.
J Colloid Interface Sci ; 628(Pt A): 144-153, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35914425

RESUMO

The shuttle effect and slow redox kinetics of sulfur cathode are the most significant technical challenges to the practical application of lithium-sulfur (Li-S) battery. Herein, a novel zwitterionic covalent organic framework (ZW-COF) wrapped onto carbon nanotubes (CNTs), labeled as ZW-COF@CNT, is developed by a reversible condensation reaction of 1,3,5-benzenetricarboxaldehyde (BTA) and 3,8-diamino-6-phenylphenanthridine (DPPD) with CNTs as a template and a subsequently-one-step post-synthetic grafting reaction with 1,3-propanesultone. The experimental results showed that, after loading active material sulfur, zwitterionic ZW-COF@CNT can effectively suppress the shuttle effect of the soluble lithium polysulfides (LiPSs) in Li-S batteries, and exhibits better cycling behavior than the as-developed neutral COF@CNT. Specifically, the as-obtained ZW-COF@CNT based sulfur cathode can maintain a discharge capacity of 944 mAh/g after 100 cycles, while that of COF@CNT based sulfur cathode drops to (665 mAh/g) after 100 cycles. Moreover, the ZW-COF@CNT based sulfur cathode delivers an attractive prolonged cycling behavior with a low capacity decay rate of 0.046 % per cycle at 1 C. This work sheds new light on rational selection and design of functionalized COFs based sulfur cathode in the Li-S battery.

14.
Can J Gastroenterol Hepatol ; 2022: 1048104, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35855954

RESUMO

Objectives: We assessed the potential of glial cell line-derived neurotrophic factor (GDNF) as a useful biomarker to predict cirrhosis in chronic hepatitis B (CHB) patients. Methods: A total of 735 patients from two medical centers (385 CHB patients and 350 healthy controls) were included to determine the association of serum and tissue GDNF levels with biopsy-proven cirrhosis. The diagnostic accuracy of serum GDNF (sGDNF) was estimated and compared with other indices of cirrhosis. Results: We showed significantly higher levels of sGDNF in CHB patients with fibrosis (28.4 pg/ml vs. 11.6 pg/ml in patients without) and patients with cirrhosis (33.8 pg/ml vs. 23.5 pg/ml in patients without). The areas under receiver operating curve (AUROCs) of sGDNF were 0.83 (95% confidence interval (CI): 0.80-0.87) for predicting liver fibrosis and 0.84 (95% CI: 0.79-0.89) for cirrhosis. Findings from the serum protein level and hepatic mRNA expression were consistent. Using the best cutoff to predict cirrhosis, we categorized the patients into sGDNF-high and sGDNF-low groups. The sGDNF-high group had significantly larger Masson's trichrome and reticulin staining-positive area, higher Scheuer score, and METAVIR fibrosis stage (all p < 0.001) but not steatosis. On multivariable regression, sGDNF was independently associated with cirrhosis with an odds ratio of 6.98 (95% CI: 1.10-17.94). Finally, we demonstrated that sGDNF outperformed AST to platelet ratio index, FIB-4, fibroscore, forn index, and fibrometer in differentiating F4 vs. F3. Conclusion: Using serum, tissue mRNA, and biopsy data, our study revealed a significant potential of sGDNF as a novel noninvasive biomarker for cirrhosis in CHB patients.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial , Hepatite B Crônica , Cirrose Hepática , Aspartato Aminotransferases , Biomarcadores/sangue , Biópsia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/sangue , Hepatite B Crônica/sangue , Humanos , Cirrose Hepática/sangue , Cirrose Hepática/virologia , Contagem de Plaquetas , RNA Mensageiro , Curva ROC , Estudos Retrospectivos
15.
Food Chem ; 387: 132813, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35429930

RESUMO

Processing is the crucial factor for green tea aroma quality. In this study, the aroma dynamic changes throughout the manufacturing process of chestnut-like aroma green tea were investigated with gas chromatography electronic nose (GC-E-Nose), gas chromatography-ion mobility spectrometry (GC-IMS), and comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC × GC-TOFMS). GC-IMS identified 33 volatile compounds while GC × GC-TOFMS identified 211 volatile components. Drying exerted the greatest influence on the volatile components of chestnut-like aroma green tea, and promoted the generation of heterocyclic compounds and sulfur compounds which were commonly generated via the Maillard reaction during the roasting stage. A large number of heterocyclic compounds such as 1-methyl-1H-pyrrole, pyrrole, methylpyrazine, furfural, 2-ethyl-5-methylpyrazine, 1-ethyl-1H-pyrrole-2-carboxaldehyde, and 3-acetylpyrrole were newly formed during the drying process. This study also validated the suitability of GC-E-Nose combined with GC-IMS and GC × GC-TOFMS for tracking the changes in volatile components of green tea throughout the manufacturing process.


Assuntos
Odorantes , Compostos Orgânicos Voláteis , Nariz Eletrônico , Cromatografia Gasosa-Espectrometria de Massas/métodos , Odorantes/análise , Pirróis/análise , Chá/química , Compostos Orgânicos Voláteis/análise
16.
J Heart Lung Transplant ; 41(7): 855-858, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35016813

RESUMO

Black patients suffer higher rates of antibody-mediated rejection and have worse long-term graft survival after heart transplantation. Donor-derived cell free DNA (ddcfDNA) is released into the blood following allograft injury. This study analyzed %ddcfDNA in 63 heart transplant recipients categorized by Black and non-Black race, during the first 200 days after transplant. Immediately after transplant, %ddcfDNA was higher for Black patients (mean [SE]: 8.3% [1.3%] vs 3.2% [1.2%], p = 0.001). In the first week post-transplant, the rate of decay in %ddcfDNA was similar (0.7% [0.68] vs 0.7% [0.11], p = 0.78), and values declined in both groups to a comparable plateau at 7 days post-transplant (0.46% [0.03] vs 0.45% [0.04], p = 0.78). The proportion of Black patients experiencing AMR was higher than non-Black patients (21% vs 9% [hazard ratio of 2.61 [95% confidence interval: 0.651-10.43], p = 0.18). Black patients were more likely to receive a race mismatched organ than non-Black patients (69% vs 35%, p = 0.01), which may explain the higher levels of early allograft injury.


Assuntos
Rejeição de Enxerto , Transplante de Coração , Aloenxertos , Rejeição de Enxerto/epidemiologia , Sobrevivência de Enxerto , Humanos , Doadores de Tecidos , Transplante Homólogo
17.
ACS Mater Au ; 2(4): 394-435, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-36855708

RESUMO

In the Internet of Things (IoT) era, various devices (e.g., sensors, actuators, energy harvesters, etc.) and systems have been developed toward the realization of smart homes/buildings and personal health care. These advanced devices can be categorized into ambient devices and wearable devices based on their usage scenarios, to enable motion tracking, health monitoring, daily care, home automation, fall detection, intelligent interaction, assistance, living convenience, and security in smart homes. With the rapidly increasing number of such advanced devices and IoT systems, achieving fully self-sustained and multimodal intelligent systems is becoming more and more important to realize a sustainable and all-in-one smart home platform. Hence, in this Review, we systematically present the recent progress of the development of advanced materials, fabrication techniques, devices, and systems for enabling smart home and health care applications. First, advanced polymer, fiber, and fabric materials as well as their respective fabrication techniques for large-scale manufacturing are discussed. After that, functional devices classified into ambient devices (at home ambiance such as door, floor, table, chair, bed, toilet, window, wall, etc.) and wearable devices (on body parts such as finger, wrist, arm, throat, face, back, etc.) are presented for diverse monitoring and auxiliary applications. Next, the current developments of self-sustained systems and intelligent systems are reviewed in detail, indicating two promising research directions in this field. Last, conclusions and outlook pinpointed on the existing challenges and opportunities are provided for the research community to consider.

18.
ACS Nano ; 15(11): 18312-18326, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34723468

RESUMO

To enable smart homes and relative applications, the floor monitoring system with embedded triboelectric sensors has been proven as an effective paradigm to capture the ample sensory information from our daily activities, without the camera-associated privacy concerns. Yet the inherent limitations of triboelectric sensors such as high susceptibility to humidity and long-term stability remain a great challenge to develop a reliable floor monitoring system. Here we develop a robust and smart floor monitoring system through the synergistic integration of highly reliable triboelectric coding mats and deep-learning-assisted data analytics. Two quaternary coding electrodes are configured, and their outputs are normalized with respect to a reference electrode, leading to highly stable detection that is not affected by the ambient parameters and operation manners. Besides, due to the universal electrode pattern design, all the floor mats can be screen-printed with only one mask, rendering higher facileness and cost-effectiveness. Then a distinctive coding can be implemented to each floor mat through external wiring, which permits the parallel-array connection to minimize the output terminals and system complexity. Further integrating with deep-learning-assisted data analytics, a smart floor monitoring system is realized for various smart home monitoring and interactions, including position/trajectory tracking, identity recognition, and automatic controls. Hence, the developed low-cost, large-area, reliable, and smart floor monitoring system shows a promising advancement of floor sensing technology in smart home applications.


Assuntos
Inteligência Artificial , Tecnologia sem Fio , Atenção à Saúde , Monitorização Fisiológica
19.
Front Endocrinol (Lausanne) ; 12: 721812, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603204

RESUMO

Objective: Idiopathic short stature (ISS), an endocrine-related disease, is difficult to diagnose. Previous studies have shown that many children with some inflammation-related diseases often have short stature, but whether inflammation is the underlying mechanism of ISS has not been studied. Here, we attempt to explore the role of inflammation in the occurrence and development of ISS and to demonstrate an available clinical diagnostic model of ISS. Methods: Frozen serum samples were collected from ISS patients (n = 4) and control individuals (n = 4). Isobaric tags for relative and absolute quantitation (iTRAQ) combined with LC-MS/MS analysis were applied to quantitative proteomics analysis. To assess clusters of potentially interacting proteins, functional enrichment (GO and KEGG) and protein-protein interaction network analyses were performed, and the crucial proteins were detected by Molecular Complex Detection (MCODE). Furthermore, serum levels of two selected proteins were measured by ELISA between ISS patients (n = 80) and controls (n = 80). In addition, experiments in vitro were used to further explore the effects of crucial proteins on endochondral ossification. Results: A total of 437 proteins were quantified, and 84 DEPs (60 upregulated and 24 downregulated) were identified between patients with ISS and controls. Functional enrichment analysis showed that the DEPs were primarily enriched in blood microparticle, acute inflammatory response, protein activation cascade, collagen-containing extracellular matrix, platelet degranulation, etc. According to the results of top 10 fold change DEPs and MCODE analysis, C1QA and C1QB were selected to further experiment. The expression levels of C1QA and C1QB were validated in serum samples. Based on the logistic regression analysis and ROC curve analysis, we constructed a novel diagnostic model by serum levels of C1QA and C1QB with a specificity of 91.2% and a sensitivity of 75% (AUC = 0.900, p <0.001). Finally, the western blotting analysis confirmed the expression levels of OCN, OPN, RUNX2, and Collagen X were downregulated in chondrocytes, and the outcome of Collagen II was upregulated. Conclusion: Our study is the first to demonstrate the significant role of inflammation in the development of ISS. In addition, we identify C1QA and C1QB as novel serum biomarkers for the diagnosis of ISS.


Assuntos
Nanismo Hipofisário/diagnóstico , Modelos Teóricos , Adolescente , Biomarcadores/sangue , Análise Química do Sangue/métodos , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Estudos de Casos e Controles , Criança , Pré-Escolar , Condrócitos/metabolismo , Cromatografia Líquida/métodos , Complemento C1q/análise , Complemento C1q/metabolismo , Técnicas de Apoio para a Decisão , Nanismo Hipofisário/sangue , Nanismo Hipofisário/epidemiologia , Feminino , Humanos , Masculino , Osteogênese , Prognóstico , Proteoma/análise , Proteoma/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...