Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 535, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227944

RESUMO

BACKGROUND: Manganese ions (Mn2+) combined with adjuvants capable of damaging and lysing tumor cells form an antitumor nano-modulator that enhances the immune efficacy of cancer therapy through the cascade activation of the cyclic GMP-AMP interferon gene synthase-stimulator (cGAS-STING) pathway, which underscores the importance of developing antitumor nano-modulators, which induce DNA damage and augment cGAS-STING activity, as a critical future research direction. METHODS AND RESULTS: We have successfully synthesized an antitumor nano-modulator, which exhibits good dispersibility and biosafety. This nano-modulator is engineered by loading manganese dioxide nanosheets (M-NS) with zebularine (Zeb), known for its immunogenicity-enhancing effects, and conducting targeted surface modification using hyaluronic acid (HA). After systemic circulation to the tumor site, Mn2+, Zeb, and reactive oxygen species (ROS) are catalytically released in the tumor microenvironment by H+ and H2O2. These components can directly or indirectly damage the DNA or mitochondria of tumor cells, thereby inducing programmed cell death. Furthermore, they promote the accumulation of double-stranded DNA (dsDNA) in the cytoplasm, enhancing the activation of the cGAS-STING signalling pathway and boosting the production of type I interferon and the secretion of pro-inflammatory cytokines. Additionally, Zeb@MH-NS enhances the maturation of dendritic cells, the infiltration of cytotoxic T lymphocytes, and the recruitment of natural killer cells at the tumor site. CONCLUSIONS: This HA-modified manganese-based hybrid nano-regulator can enhance antitumor therapy by boosting innate immune activity and may provide new directions for immunotherapy and clinical translation in cancer.


Assuntos
Imunidade Inata , Compostos de Manganês , Proteínas de Membrana , Nucleotidiltransferases , Óxidos , Transdução de Sinais , Microambiente Tumoral , Nucleotidiltransferases/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Animais , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Proteínas de Membrana/metabolismo , Transdução de Sinais/efeitos dos fármacos , Camundongos , Óxidos/química , Óxidos/farmacologia , Manganês/química , Manganês/farmacologia , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Feminino , Camundongos Endogâmicos C57BL
3.
FASEB J ; 38(13): e23766, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38967214

RESUMO

Dysbiosis of gut microbiota may account for pathobiology in simple fatty liver (SFL), metabolic dysfunction-associated steatohepatitis (MASH), fibrotic progression, and transformation to MASH-associated hepatocellular carcinoma (MASH-HCC). The aim of the present study is to investigate gut dysbiosis in this progression. Fecal microbial rRNA-16S sequencing, absolute quantification, histopathologic, and biochemical tests were performed in mice fed high fat/calorie diet plus high fructose and glucose in drinking water (HFCD-HF/G) or control diet (CD) for 2, 16 weeks, or 14 months. Histopathologic examination verified an early stage of SFL, MASH, fibrotic, or MASH-HCC progression with disturbance of lipid metabolism, liver injury, and impaired gut mucosal barrier as indicated by loss of occludin in ileum mucosa. Gut dysbiosis occurred as early as 2 weeks with reduced α diversity, expansion of Kineothrix, Lactococcus, Akkermansia; and shrinkage in Bifidobacterium, Lactobacillus, etc., at a genus level. Dysbiosis was found as early as MAHS initiation, and was much more profound through the MASH-fibrotic and oncogenic progression. Moreover, the expansion of specific species, such as Lactobacillus johnsonii and Kineothrix alysoides, was confirmed by an optimized method for absolute quantification. Dynamic alterations of gut microbiota were characterized in three stages of early SFL, MASH, and its HCC transformation. The findings suggest that the extent of dysbiosis was accompanied with MASH progression and its transformation to HCC, and the shrinking or emerging of specific microbial species may account at least in part for pathologic, metabolic, and immunologic alterations in fibrogenic progression and malignant transition in the liver.


Assuntos
Carcinoma Hepatocelular , Disbiose , Microbioma Gastrointestinal , Neoplasias Hepáticas , Camundongos Endogâmicos C57BL , Animais , Camundongos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/microbiologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/etiologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/microbiologia , Neoplasias Hepáticas/etiologia , Disbiose/microbiologia , Masculino , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado Gorduroso/microbiologia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Progressão da Doença , Metabolismo dos Lipídeos , Fígado/metabolismo , Fígado/patologia
4.
Drug Des Devel Ther ; 18: 2555-2570, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952487

RESUMO

Purpose: The aim of this review was to provide all the pharmacokinetic data for semaglutide in humans concerning its pharmacokinetics after subcutaneously and oral applications in healthy and diseased populations, to provide recommendations for clinical use. Methodology: The PubMed and Embase databases were searched to screen studies associated with the pharmacokinetics of semaglutide. The pharmacokinetic parameters included area under the curve plasma concentrations (AUC), maximal plasma concentration (Cmax), time to Cmax, half-life (t1/2), and clearance. The systematic literature search retrieved 17 articles including data on pharmacokinetic profiles after subcutaneously and oral applications of semaglutide, and at least one of the above pharmacokinetic parameter was reported in all included studies. Results: Semaglutide has a predictable pharmacokinetic profile with a long t1/2 that allows for once-weekly subcutaneous administration. The AUC and Cmax of both oral and subcutaneous semaglutide increased with dose. Food and various dosing conditions including water volume and dosing schedules can affect the oral semaglutide exposure. There are limited drug-drug interactions and no dosing adjustments in patients with upper gastrointestinal disease, renal impairment or hepatic impairment. Body weight may affect semaglutide exposure, but further studies are needed to confirm this. Conclusion: This review encompasses all the pharmacokinetic data for subcutaneous and oral semaglutide in both healthy and diseased participants. The existing pharmacokinetic data can assist in developing and evaluating pharmacokinetic models of semaglutide and will help clinicians predict semaglutide dosages. In addition, it can also help optimize future clinical trials.


Assuntos
Peptídeos Semelhantes ao Glucagon , Peptídeos Semelhantes ao Glucagon/farmacocinética , Peptídeos Semelhantes ao Glucagon/administração & dosagem , Humanos , Administração Oral , Injeções Subcutâneas , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/administração & dosagem , Interações Medicamentosas
5.
BioData Min ; 17(1): 23, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010132

RESUMO

BACKGROUND: Patients with chronic conditions need multiple medications daily to manage their condition. However, most patients have poor compliance, which affects the effectiveness of treatment. To address these challenges, we establish a medication reminder system for the intelligent generation of universal medication schedule (UMS) to remind patients with chronic diseases to take medication accurately and to improve safety of home medication. METHODS: To design medication time constraint with one drug (MTCOD) for each drug and medication time constraint with multi-drug (MTCMD) for each two drugs in order to better regulate the interval and time of patients' medication. Establishment of a medication reminder system consisting of a cloud database of drug information, an operator terminal for medical staff and a patient terminal. RESULTS: The cloud database has a total of 153,916 pharmaceutical products, 496,708 drug interaction data, and 153,390 pharmaceutical product-ingredient pairs. The MTCOD data was 153,916, and the MTCMD data was 8,552,712. An intelligent UMS medication reminder system was constructed. The system can read the prescription information of patients and provide personalized medication guidance with medication timeline for chronic patients. At the same time, patients can query medication information and get remote pharmacy guidance in real time. CONCLUSIONS: Overall, the medication reminder system provides intelligent medication reminders, automatic drug interaction identification, and monitoring system, which is helpful to monitor the entire process of treatment in patients with chronic diseases.

6.
Front Med (Lausanne) ; 11: 1422895, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050537

RESUMO

Laparoscopic surgery is extensively applied in the treatment of hepatobiliary diseases. Hepatic artery pseudoaneurysm (HAP) is a rare complication following hepatic biliary surgery through laparoscopy. The clinical manifestations of HAP are diverse and can be fatal. Given its severity, rapid assessment and management are crucial to ensuring a good prognosis. Here, we report three cases of HAP; two underwent laparoscopic surgery due to cholelithiasis, and another caused by trauma. The first case exhibited a pseudoaneurysm involving the distal portion of the right hepatic artery main trunk. The second patient had a pseudoaneurysm at the bifurcation of the left and right hepatic arteries. The third case involved a patient with a pseudoaneurysm involving a branch of the right hepatic artery. The main clinical manifestations of all three cases were bleeding from the biliary tract (the first two cases showed postoperative bleeding in the T-tube, while the third case exhibited gastrointestinal bleeding). The final diagnosis was obtained through digital subtraction angiography. The three patients underwent successful transcatheter arterial embolization operation and a follow-up revealed they were disease-free and alive. This article aims to highlight a rare complication of laparoscopic hepatobiliary surgery and share our experience in early diagnosis and treatment of HAP.

7.
Drug Des Devel Ther ; 18: 1499-1514, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716368

RESUMO

Background: Ferroptosis plays a crucial role in the occurrence and development of cerebral ischemia-reperfusion (I/R) injury and is regulated by mitogen-activated protein kinase 1/2 (ERK1/2). In China, Naodesheng Pills (NDSP) are prescribed to prevent and treat cerebrosclerosis and stroke. However, the protective effects and mechanism of action of NDSP against cerebral I/R-induced ferroptosis remain unclear. We investigated whether NDSP exerts its protective effects against I/R injury by regulating ferroptosis and aimed to elucidate the underlying mechanisms. Methods: The efficacy of NDSP was evaluated using a Sprague-Dawley rat model of middle cerebral artery occlusion and an in vitro oxygen-glucose deprivation/reoxygenation (OGD/R) model. Brain injury was assessed using 2,3,5-triphenyltetrazolium chloride (TTC), hematoxylin and eosin staining, Nissl staining, and neurological scoring. Western blotting was performed to determine the expression levels of glutathione peroxidase 4 (GPX4), divalent metal-ion transporter-1 (DMT1), solute carrier family 7 member 11 (SLC7A11), and transferrin receptor 1 (TFR1). Iron levels, oxidative stress, and mitochondrial morphology were also evaluated. Network pharmacology was used to assess the associated mechanisms. Results: NDSP (1.08 g/kg) significantly improved cerebral infarct area, cerebral water content, neurological scores, and cerebral tissue damage. Furthermore, NDSP inhibited I/R- and OGD/R-induced ferroptosis, as evidenced by the increased protein expression of GPX4 and SLC7A11, suppression of TFR1 and DMT1, and an overall reduction in oxidative stress and Fe2+ levels. The protective effects of NDSP in vitro were abolished by the GPX4 inhibitor RSL3. Network pharmacology analysis revealed that ERK1/2 was the core target gene and that NDSP reduced the amount of phosphorylated ERK1/2. Conclusion: NDSP exerts its protective effects against I/R by inhibiting cerebral I/R-induced ferroptosis, and this mechanism is associated with the regulation of ferroptosis via the ERK1/2 signaling pathway.


Assuntos
Medicamentos de Ervas Chinesas , Ferroptose , Sistema de Sinalização das MAP Quinases , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Ferroptose/efeitos dos fármacos , Animais , Ratos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Masculino , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia
8.
Eur J Clin Pharmacol ; 80(8): 1181-1187, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38639762

RESUMO

PURPOSE: Clozapine is the effective therapy for treatment-refractory schizophrenia. However, the use of clozapine is limited by its adverse effects. As propranolol is frequently used for the prevention and treatment of clozapine-induced tachycardia, we performed a meta-analysis to evaluate the effects of propranolol on steady state pharmacokinetics of clozapine in schizophrenic patients. METHODS: We included 16 retrospective studies on the effects of propranolol on steady state pharmacokinetics of clozapine in schizophrenic patients, with data from both generic and brand name treatment phases in eight clozapine bioequivalence studies conducted in a single center in China from 2018 to 2022. Review Manager 5.4 was used for meta-analysis of the included studies. RESULTS: The SMDs with 95% CIs of AUC0-12, Cmax,ss, C, and C were calculated to be 0.44 (0.23, 0.64), 0.40 (0.20, 0.61), 0.43 (0.22, 0.63), and 0.44 (0.23, 0.64), respectively. These findings proved that combination with propranolol would increase the systemic exposure of clozapine. T1/2 of clozapine was significantly longer in the presence of propranolol than in the absence of propranolol (SMD = 0.32, 95% CI [0.12, 0.52], p = 0.002). There was no statistically significant difference for T of clozapine in the presence or absence of propranolol (SMD = - 0.05, 95% CI [- 0.25, 0.15], p = 0.63). CONCLUSION: The combination with propranolol could significantly increase systemic exposure and extended T1/2 of clozapine, and thus need to be considered in prescribing decisions.


Assuntos
Antipsicóticos , Clozapina , Propranolol , Clozapina/farmacocinética , Clozapina/uso terapêutico , Clozapina/efeitos adversos , Humanos , Propranolol/farmacocinética , Propranolol/uso terapêutico , Antipsicóticos/farmacocinética , Antipsicóticos/uso terapêutico , Antipsicóticos/efeitos adversos , Equivalência Terapêutica , Esquizofrenia/tratamento farmacológico , Interações Medicamentosas
9.
Clin Transl Med ; 14(3): e1630, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38509842

RESUMO

BACKGROUND AND AIMS: Liver regeneration retardation post partial hepatectomy (PH) is a common clinical problem after liver transplantation. Identification of key regulators in liver regeneration post PH may be beneficial for clinically improving the prognosis of patients after liver transplantation. This study aimed to clarify the function of junctional protein-associated with coronary artery disease (JCAD) in liver regeneration post PH and to reveal the underlying mechanisms. METHODS: JCAD knockout (JCAD-KO), liver-specific JCAD-KO (Jcad△Hep) mice and their control group were subjected to 70% PH. RNA sequencing was conducted to unravel the related signalling pathways. Primary hepatocytes from KO mice were treated with epidermal growth factor (EGF) to evaluate DNA replication. Fluorescent ubiquitination-based cell cycle indicator (FUCCI) live-imaging system was used to visualise the phases of cell cycle. RESULTS: Both global and liver-specific JCAD deficiency postponed liver regeneration after PH as indicated by reduced gene expression of cell cycle transition and DNA replication. Prolonged retention in G1 phase and failure to transition over the cell cycle checkpoint in JCAD-KO cell line was indicated by a FUCCI live-imaging system as well as pharmacologic blockage. JCAD replenishment by adenovirus reversed the impaired DNA synthesis in JCAD-KO primary hepatocyte in exposure to EGF, which was abrogated by a Yes-associated protein (YAP) inhibitor, verteporfin. Mechanistically, JCAD competed with large tumour suppressor 2 (LATS2) for WWC1 interaction, leading to LATS2 inhibition and thereafter YAP activation, and enhanced expression of cell cycle-associated genes. CONCLUSION: JCAD deficiency led to delayed regeneration after PH as a result of blockage in cell cycle progression through the Hippo-YAP signalling pathway. These findings uncovered novel functions of JCAD and suggested a potential strategy for improving graft growth and function post liver transplantation. KEY POINTS: JCAD deficiency leads to an impaired liver growth after PH due to cell division blockage. JCAD competes with LATS2 for WWC1 interaction, resulting in LATS2 inhibition, YAP activation and enhanced expression of cell cycle-associated genes. Delineation of JCADHippoYAP signalling pathway would facilitate to improve prognosis of acute liver failure and graft growth in living-donor liver transplantation.


Assuntos
Moléculas de Adesão Celular , Regeneração Hepática , Transplante de Fígado , Animais , Humanos , Camundongos , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/metabolismo , Regeneração Hepática/genética , Doadores Vivos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Moléculas de Adesão Celular/metabolismo
10.
Cancer Lett ; 588: 216768, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38453045

RESUMO

Hedgehog signaling is activated in response to liver injury, and modulates organogenesis. However, the role of non-canonical hedgehog activation via TGF-ß1/SMAD3 in hepatic carcinogenesis is poorly understood. TGF-ß1/SMAD3-mediated non-canonical activation was found in approximately half of GLI2-positive hepatocellular carcinoma (HCC), and two new GLI2 isoforms with transactivating activity were identified. Phospho-SMAD3 interacted with active GLI2 isoforms to transactivate downstream genes in modulation of stemness, epithelial-mesenchymal transition, chemo-resistance and metastasis in poorly-differentiated hepatoma cells. Non-canonical activation of hedgehog signaling was confirmed in a transgenic HBV-associated HCC mouse model. Inhibition of TGF-ß/SMAD3 signaling reduced lung metastasis in a mouse in situ hepatic xenograft model. In another cohort of 55 HCC patients, subjects with high GLI2 expression had a shorter disease-free survival than those with low expression. Moreover, co-positivity of GLI2 with SMAD3 was observed in 87.5% of relapsed HCC patients with high GLI2 expression, indicating an increased risk of post-resection recurrence of HCC. The findings underscore that suppressing the non-canonical hedgehog signaling pathway may confer a potential strategy in the treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/patologia , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Neoplasias Hepáticas/patologia , Camundongos Transgênicos , Proteínas Nucleares/metabolismo , Transdução de Sinais , Proteína Smad3/genética , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteína Gli2 com Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/metabolismo
12.
Clin Mol Hepatol ; 30(2): 206-224, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38190829

RESUMO

BACKGROUND/AIMS: Cholestatic liver diseases including primary biliary cholangitis (PBC) are associated with active hepatic fibrogenesis, which ultimately progresses to cirrhosis. Activated hepatic stellate cells (HSCs) are the main fibrogenic effectors in response to cholangiocyte damage. JCAD regulates cell proliferation and malignant transformation in nonalcoholic steatoheaptitis-associated hepatocellular carcinoma (NASH-HCC). However, its participation in cholestatic fibrosis has not been explored yet. METHODS: Serial sections of liver tissue of PBC patients were stained with immunofluorescence. Hepatic fibrosis was induced by bile duct ligation (BDL) in wild-type (WT), global JCAD knockout mice (JCAD-KO) and HSC-specific JCAD knockout mice (HSC-JCAD-KO), and evaluated by histopathology and biochemical tests. In situ-activated HSCs isolated from BDL mice were used to determine effects of JCAD on HSC activation. RESULTS: In consistence with staining of liver sections from PBC patients, immunofluorescent staining revealed that JCAD expression was identified in smooth muscle α-actin (α-SMA)-positive fibroblast-like cells and was significantly up-regulated in WT mice with BDL. JCAD deficiency remarkably ameliorated BDL-induced hepatic injury and fibrosis, as documented by liver hydroxyproline content, when compared to WT mice with BDL. Histopathologically, collagen deposition was dramatically reduced in both JCAD-KO and HSC-JCAD-KO mice compared to WT mice, as visualized by Trichrome staining and semi-quantitative scores. Moreover, JCAD deprivation significantly attenuated in situ HSC activation and reduced expression of fibrotic genes after BDL. CONCLUSION: JCAD deficiency effectively suppressed hepatic fibrosis induced by BDL in mice, and the underlying mechanisms are largely through suppressed Hippo-YAP signaling activity in HSCs.


Assuntos
Carcinoma Hepatocelular , Moléculas de Adesão Celular , Colestase , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Colestase/complicações , Colestase/metabolismo , Colestase/patologia , Células Estreladas do Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , Neoplasias Hepáticas/patologia , Camundongos Knockout , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo
13.
Theranostics ; 13(13): 4430-4448, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37649614

RESUMO

Background: Hepatic fibrosis is a premalignant lesion, and how injured hepatocytes transform into malignancy in a fibrotic microenvironment is poorly understood. Senescence is one of major fates of activated hepatic stellate cells (HSCs). Paucity of literature is available regarding the influence of senescent HSCs on behavior of steatotic hepatocytes. Methods: Senescent HSCs were identified in a murine model of nonalcoholic steatohepatitis (NASH)-fibrosis-hepatocellular carcinoma (HCC) and human NASH-HCC specimens. Secretome of senescent HSCs was analyzed by label-free mass-spectrum (NanoRPLC-MS/MS) and verified quantitatively. Results: Senescent HSCs were increased along with the progression from nonalcoholic fatty liver (NAFL), NASH to NASH-fibrosis, and reached a peak at the stage of advanced fibrosis and then decreased when hepatocellular dysplasia or HCC was developed. Critical components affecting proliferation, epithelial-mesenchymal transition (EMT) or migration were identified from secretome of senescent HSCs, and may activate morphogenic hedgehog or oncogenic Wnt signaling pathways to accelerate malignant transformation of steatotic or dysplastic hepatocytes. Primary hepatocytes stimulated with conditioned medium from senescent HSCs, in co-culture or co-cultured in 3D spheroids with senescent HSCs exhibited an enhanced proliferating or EMT profile. Conclusion: Senescent HSCs secreted a characterized protein profile favoring malignant transformation of steatotic or dysplastic hepatocytes through activating morphogenic hedgehog or oncogenic Wnt signaling pathways in the progression from NASH to malignancy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Camundongos , Células Estreladas do Fígado , Secretoma , Ouriços , Espectrometria de Massas em Tandem , Cirrose Hepática , Hiperplasia , Microambiente Tumoral
14.
Environ Sci Pollut Res Int ; 30(32): 78521-78536, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37271788

RESUMO

The effect of polydopamine (PDA) modification on aminated Fe3O4 nanoparticles (Fe3O4-NH2)/graphite oxide (GO)/ß-cyclodextrin polymer cross-linked by citric acid (CDP-CA) composites were studied for the removal of a cationic dye (methylene blue, MB) and an anionic dye (Congo red, CR) from waters. The micro-structural and magnetic characterizations confirmed the successful preparation of Fe3O4-NH2/GO/CDP-CA and PDA/Fe3O4-NH2/GO/CDP-CA composites. The maximum MB and CR adsorption capacities of Fe3O4-NH2/GO/CDP-CA were 75 mg/g and 104 mg/g, respectively, while the corresponding amounts for PDA/Fe3O4-NH2/GO/CDP-CA composite were 195 mg/g and 64 mg/g, respectively. The dye sorption behaviors of these two composites were explained by their corresponding surface-charged properties according to the measured zeta potential results. Moreover, the high saturation magnetizations and the stable dye removal rate in the adsorption-desorption cycles indicated the good recyclability and reusability of the fabricated composites.


Assuntos
Ciclodextrinas , Grafite , Grafite/química , Ácido Cítrico , Óxidos/química , Adsorção , Fenômenos Magnéticos
15.
J Oncol ; 2023: 5957481, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36733671

RESUMO

Background: Emerging evidence has shown that two common genetic polymorphisms within the pleckstrin domain-containing protein 5 (DEPDC5), rs1012068 and rs5998152, may be associated with the risk of hepatocellular carcinoma (HCC), especially in those individuals chronically infected with the hepatitis C virus (HCV) or the hepatitis B virus (HBV). However, these findings have not been consistently replicated in the literature due to limited sample sizes or different etiologies of HCC. Thus, the present systematic review and meta-analysis were performed to resolve this inconsistency. Methods: The databases PubMed, Embase, Web of Science, the China National Knowledge Infrastructure, and Scopus were searched up to December 12, 2022. Data from relevant studies were pooled, and odds ratios and 95% confidence intervals were calculated. Results: A total of 11 case-control studies encompassing 2,609 cases and 8,171 controls on rs1012068 and three encompassing 411 cases and 1,448 controls on rs5998152 were included. Results indicated that the DEPDC5 rs1012068 polymorphism did not significantly increase HCC risk in the total population (allelic model (OR = 1.32, 95% CI = 1.04-1.67, P = 0.02); the recessive model (OR = 1.42, 95% CI = 0.96-2.10, P = 0.08); the dominant model (OR = 1.43, 95% CI = 1.09-1.87, P = 0.01); the homozygous model (OR = 1.61, 95% CI = 1.01-2.57, P = 0.05); the heterozygous model (OR = 1.39, 95% CI = 1.09-1.79, P = 0.009)). Subgroup analyses based on ethnicity and etiology revealed that the rs1012068 polymorphism, under all five genetic models, was associated with increased HCC risk in Asians or in individuals with chronic HBV infection but not in individuals with chronic HCV infection. A significant association was also observed between rs5998152 and HCV-related HCC risk in Asians chronically infected with HCV under allelic, dominant, and heterozygous models. Conclusion: Our study suggests that the DEPDC5 rs1012068 polymorphism increases HCC risk, especially in Asians with chronic HBV infection, while the rs5998152 polymorphism increases HCC risk in Asians with chronic HCV infection.

16.
J Immunol Res ; 2022: 4983532, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405011

RESUMO

Background: Lamin family members play crucial roles in promoting oncogenesis and cancer development. The values of lamin family in predicting prognosis and immunotherapy response remain largely unclarified. Our research is aimed at comprehensively estimating the clinical significance of lamin family in hepatocellular carcinoma and constructing a novel lamin family-based signature to predict prognosis and guide the precise immunotherapy. Methods: The expression features and prognostic value of LMNA, LMNB1, and LMNB2 were explored in the TCGA and GEO databases. The biological functions of LMNB1 and LMNB2 were validated by in vitro assays. A lamin family-based signature was built using the TCGA training set. The TCGA test set, entire TCGA set, and GSE14520 set were used to validate its predictive power. Univariate and multivariate analyses were performed to evaluate the independence of the lamin family-based signature from other clinicopathological characteristics. A nomogram was constructed using the lamin family-based signature and TNM stage. The associations of this signature with molecular pathways, clinical characteristics, immune cell infiltration, and immunotherapy response were analyzed. Results: Lamin family members were upregulated in HCC. Upregulation of LMNB1 and LMNB2 promoted HCC proliferation, migration, and invasion. The predictive signature was initially established based on LMNB1 and LMNB2 which could effectively identify differences in overall survival, immune cell infiltration, and clinicopathological characteristics of high- and low-risk patients. The nomogram showed high prognostic predictive accuracy. Importantly, the lamin family-based signature was correlated with immune suppression and expression of immune checkpoint molecules. Conclusions: The lamin family-based signature is a robust biomarker to predict overall survival and immunotherapy response in HCC. High-risk score patients have a poorer overall survival and might be more sensitive to immunotherapy. This signature may contribute to improving individualized prognosis prediction and precision immunotherapy for HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/metabolismo , Biomarcadores Tumorais/metabolismo , Prognóstico , Imunoterapia
17.
Front Endocrinol (Lausanne) ; 13: 1000739, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36176469

RESUMO

Epidemic obesity is contributing to increases in the prevalence of obesity-related metabolic diseases and has, therefore, become an important public health problem. Adipose tissue is a vital energy storage organ that regulates whole-body energy metabolism. Triglyceride degradation in adipocytes is called lipolysis. It is closely tied to obesity and the metabolic disorders associated with it. Various natural products such as flavonoids, alkaloids, and terpenoids regulate lipolysis and can promote weight loss or improve obesity-related metabolic conditions. It is important to identify the specific secondary metabolites that are most effective at reducing weight and the health risks associated with obesity and lipolysis regulation. The aims of this review were to identify, categorize, and clarify the modes of action of a wide diversity of plant secondary metabolites that have demonstrated prophylactic and therapeutic efficacy against obesity by regulating lipolysis. The present review explores the regulatory mechanisms of lipolysis and summarizes the effects and modes of action of various natural products on this process. We propose that the discovery and development of natural product-based lipolysis regulators could diminish the risks associated with obesity and certain metabolic conditions.


Assuntos
Produtos Biológicos , Doenças Metabólicas , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Flavonoides , Humanos , Lipólise , Doenças Metabólicas/tratamento farmacológico , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Terpenos/uso terapêutico , Triglicerídeos/metabolismo
18.
Drug Des Devel Ther ; 16: 2043-2053, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35791403

RESUMO

Rheumatoid arthritis (RA) is a chronic autoimmune disease that can lead to severe joint damage, disability and mortality. Quercetin (QUE) is a natural flavonoid that is ubiquitous in fruits and vegetables. This article reviews the effect of QUE on articular and extra-articular manifestations of RA in vitro and in vivo. In general, for articular manifestations, QUE inhibited synovial membrane inflammation by reducing inflammatory cytokines and mediators, decreasing oxidative stress, inhibiting proliferation, migration and invasion, and promoting apoptosis of fibroblast-like synoviocytes (FLS), regulated autoimmune response through modulating Th17/Treg imbalance and Th17 cells differentiation, reducing autoantibodies levels and regulating ectonucleoside triphosphate diphosphohydrolase (E-NTPDase)/ectoadenosine deaminase (E-ADA) activities, reduced bony damage via lowering matrix metalloproteinase (MMP)-1, MMP-3, receptor activator of nuclear factor kappa B ligand (RANKL) expression and osteoclasts formation. For extra-articular manifestations, QUE could reverse the neurodegenerative processes of the enteric nervous system (ENS) and exhibited cytoprotective, genoprotective and hepatoprotective effects. In addition, we also summarize some contradictory experimental results and explore the possibility for these differences to form a sound basis for the clinical application of QUE for RA.


Assuntos
Artrite Reumatoide , Sinoviócitos , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Células Cultivadas , Humanos , Quercetina/farmacologia , Membrana Sinovial
19.
Front Endocrinol (Lausanne) ; 13: 853822, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35422764

RESUMO

The global diabetes epidemic and its complications are increasing, thereby posing a major threat to public health. A comprehensive understanding of diabetes mellitus (DM) and its complications is necessary for the development of effective treatments. Ferroptosis is a newly identified form of programmed cell death caused by the production of reactive oxygen species and an imbalance in iron homeostasis. Increasing evidence suggests that ferroptosis plays a pivotal role in the pathogenesis of diabetes and diabetes-related complications. In this review, we summarize the potential impact and regulatory mechanisms of ferroptosis on diabetes and its complications, as well as inhibitors of ferroptosis in diabetes and diabetic complications. Therefore, understanding the regulatory mechanisms of ferroptosis and developing drugs or agents that target ferroptosis may provide new treatment strategies for patients with diabetes.


Assuntos
Complicações do Diabetes , Diabetes Mellitus , Ferroptose , Complicações do Diabetes/etiologia , Diabetes Mellitus/tratamento farmacológico , Homeostase , Humanos , Espécies Reativas de Oxigênio/metabolismo
20.
Bioengineered ; 13(4): 9211-9231, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35436411

RESUMO

Hepatocellular carcinoma (HCC) is an aggressive malignancy. Previous studies have found that lamin B1 (LMNB1) contributes to the development of human cancers. However, the biological functions and prognostic values of LMNB1 in HCC have not been adequately elucidated. In our present research, the expression pattern of LMNB1 was analyzed. The prognostic values of LMNB1 were evaluated by Kaplan-Meier survival analysis and Cox proportional hazards regression analysis. The effects of LMNB1 on HCC progression were assessed by Cell Counting Kit-8 (CCK-8), colony formation, wound healing, Transwell and in vivo xenograft assays. The mechanisms of LMNB1 in HCC progression were elucidated by gene set enrichment analysis (GSEA) and loss-of-function assays. Besides, a nomogram for predicting overall survival (OS) was constructed. The results demonstrated that LMNB1 was overexpressed in HCC and that increased LMNB1 expression predicted a dismal prognosis. Further experiments showed that LMNB1 facilitated cell proliferation and metastasis in HCC. Functional enrichment analysis revealed that LMNB1 modulated metastasis-associated biological functions such as focal adhesion, extracellular matrix, cell junctions and cell adhesion. Mechanistically, we revealed that LMNB1 promoted HCC progression by regulating the phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways. Moreover, incorporating LMNB1, Ki67 and Barcelona Clinic Liver Cancer (BCLC) stage into a nomogram showed better predictive accuracy than the Tumor-Node-Metastasis (TNM) stage and BCLC stage. In conclusion, LMNB1 may serve as an effective therapeutic target as well as a reliable prognostic biomarker for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Humanos , Lamina Tipo B , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fosfatidilinositol 3-Quinases , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA