Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Clin Cancer Res ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809262

RESUMO

On November 8, 2023, the FDA approved fruquintinib, an inhibitor of vascular endothelial growth factor receptors (VEGFR)-1, -2, and -3, for the treatment of patients with metastatic colorectal cancer (mCRC) who have been previously treated with fluoropyrimidine­, oxaliplatin­, and irinotecan­based chemotherapy, an anti­VEGF therapy, and, if RAS wild­type and medically appropriate, an anti EGFR therapy. Approval was based on Study FRESCO-2, a globally-conducted, double-blind, placebo-controlled randomized trial. The primary endpoint was overall survival (OS). The key secondary endpoint was progression-free survival (PFS). A total of 691 patients were randomized (461 and 230 into the fruquintinib and placebo arms, respectively). Fruquintinib provided a statistically significant improvement in OS with a hazard ratio (HR) of 0.66 (95% CI: 0.55, 0.80; p<0.001). The median OS was 7.4 months (95% CI: 6.7, 8.2) in the fruquintinib arm and 4.8 months (95% CI: 4.0, 5.8) for the placebo arm. Adverse events observed were generally consistent with the known safety profile associated with inhibition of the VEGFR. The results of FRESCO-2 were supported by the FRESCO study, a double-blind, single country, placebo-controlled, randomized trial in patients with refractory mCRC who have been previously treated with fluoropyrimidine­, oxaliplatin­, and irinotecan­based chemotherapy. In FRESCO, the OS HR was 0.65 (95% CI: 0.51, 0.83; p<0.001). FDA concluded that the totality of the evidence from FRESCO-2 and FRESCO supported an indication for patients with mCRC with prior treatment with fluoropyrimidine, oxaliplatin-, and irinotecan-based chemotherapy, an anti-VEGF biological therapy, and if RAS wild­type and medically appropriate, an anti-EGFR therapy.

2.
Clin Cancer Res ; 30(1): 17-22, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-37624619

RESUMO

In January 2023, the FDA granted accelerated approval to pirtobrutinib for the treatment of adult patients with relapsed or refractory mantle cell lymphoma (MCL) after at least two lines of systemic therapy, including a Bruton tyrosine kinase (BTK) inhibitor. Approval was based on BRUIN, a single-arm study of pirtobrutinib monotherapy in patients with B-cell malignancies. Efficacy was based on independent review committee-assessed overall response rate (ORR) supported by durability of response in 120 patients with relapsed or refractory MCL who had received a prior BTK inhibitor and received the approved pirtobrutinib dosage of 200 mg once daily. The ORR was 50% [95% confidence interval (CI), 41-59], and the complete response rate was 13% (95% CI, 7-20), with an estimated median duration of response of 8.3 months. The most common nonhematologic adverse reactions were fatigue, musculoskeletal pain, diarrhea, edema, dyspnea, pneumonia, and bruising. Warnings and Precautions in labeling include infection, hemorrhage, cytopenias, atrial arrhythmias, and second primary malignancies. Postmarketing studies were required to evaluate longer-term safety of pirtobrutinib and to verify the clinical benefit of pirtobrutinib. This article summarizes key aspects of the regulatory review, including the indication statement, efficacy and safety considerations, and postmarketing requirements.


Assuntos
Linfoma de Célula do Manto , Adulto , Humanos , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/patologia , Pirazóis/uso terapêutico , Inibidores de Proteínas Quinases/efeitos adversos , Fadiga/induzido quimicamente
3.
Microbiol Spectr ; 11(6): e0184023, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37930013

RESUMO

From 2008 to 2020, the Taiwan National Notifiable Disease Surveillance System database demonstrated that the incidence of non-vaccine serotype 23A invasive pneumococcal disease (IPD) approximately doubled. In this study, 276 non-repetitive pneumococcal clinical isolates were collected from two medical centers in Taiwan between 2019 and 2021. Of these 267 pneumococci, 60 were serotype 23A. Among them, 50 (83%) of serotype 23A isolates belonged to the sequence type (ST) 166 variant of the Spain9V-3 clone. Pneumococcal 23A-ST166 isolates were collected to assess their evolutionary relationships using whole-genome sequencing. All 23A-ST166 isolates were resistant to amoxicillin and meropenem, and 96% harbored a novel combination of penicillin-binding proteins (PBPs) (1a:2b:2x):15:11:299, the newly identified PBP2x-299 in Taiwan. Transformation of the pbp1a, pbp2b, and pbp2x alleles into the ß-lactam-susceptible R6 strain revealed that PBP2x-299 and PBP2b-11 increased the MIC of ceftriaxone and meropenem by 16-fold, respectively. Prediction analysis of recombination sites in PMEN3 descendants (23A-ST166 in Taiwan, 35B-ST156 in the United States, and 11A-ST838/ST6521 in Europe) showed that adaptive evolution involved repeated, selectively favored convergent recombination in the capsular polysaccharide synthesis region, PBPs, murM, and folP genome sites. In the late 13-valent pneumococcal conjugate vaccine era, PMEN3 continuously displayed an evolutionary capacity for global dissemination and persistence, increasing IPD incidence, leading to an offset in the decrease of pneumococcal conjugate vaccine serotype-related diseases, and contributing to high antibiotic resistance. A clonal shift with a highly ß-lactam-resistant non-vaccine serotype 23A, from ST338 to ST166, increased in Taiwan. ST166 is a single-locus variant of the Spain9V-3 clone, which is also called the PMEN3 lineage. All 23A-ST166 isolates, in this study, were resistant to amoxicillin and meropenem, and 96% harbored a novel combination of penicillin-binding proteins (PBPs) (1a:2b:2x):15:11:299. PBP2x-299 and PBP2b-11 contributed to the increasing MIC of ceftriaxone and meropenem, respectively. Prediction analysis of recombination sites in PMEN3 descendants showed that adaptive evolution involved repeated, selectively favored convergent recombination in the capsular polysaccharide synthesis region, PBPs, murM, and folP genome sites. In the late 13-valent pneumococcal conjugate vaccine era, PMEN3 continuously displays the evolutionary capacity for dissemination, leading to an offset in the decrease of pneumococcal conjugate vaccine serotype-related diseases and contributing to high antibiotic resistance.


Assuntos
Amoxicilina , Infecções Pneumocócicas , Humanos , Amoxicilina/farmacologia , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Meropeném , Espanha/epidemiologia , Ceftriaxona , Taiwan/epidemiologia , Vacinas Conjugadas/metabolismo , Streptococcus pneumoniae , Infecções Pneumocócicas/epidemiologia , Sorogrupo , beta-Lactamas , Testes de Sensibilidade Microbiana , Genômica , Recombinação Genética , Polissacarídeos/metabolismo
4.
J Clin Pharmacol ; 63 Suppl 2: S65-S77, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37942906

RESUMO

Obesity, which is defined as having a body mass index of 30 kg/m2 or greater, has been recognized as a serious health problem that increases the risk of many comorbidities (eg, heart disease, stroke, and diabetes) and mortality. The high prevalence of individuals who are classified as obese calls for additional considerations in clinical trial design. Nevertheless, gaining a comprehensive understanding of how obesity affects the pharmacokinetics (PK), pharmacodynamics (PD), and efficacy of drugs proves challenging, primarily as obese patients are seldom selected for enrollment at the early stages of drug development. Over the past decade, model-informed drug development (MIDD) approaches have been increasingly used in drug development programs for obesity and its related diseases as they use and integrate all available sources and knowledge to inform and facilitate clinical drug development. This review summarizes the impact of obesity on PK, PD, and the efficacy of drugs and, more importantly, provides an overview of the use of MIDD approaches in drug development and regulatory decision making for patients with obesity: estimating PK, PD, and efficacy in specific dosing scenarios, optimizing dose regimen, and providing evidence for seeking new indication(s). Recent review cases using MIDD approaches to support dose selection and provide confirmatory evidence for effectiveness for patients with obesity, including pediatric patients, are discussed. These examples demonstrate the promise of MIDD as a valuable tool in supporting clinical trial design during drug development and facilitating regulatory decision-making processes for the benefit of patients with obesity.


Assuntos
Desenvolvimento de Medicamentos , Obesidade , Humanos , Criança , Obesidade/tratamento farmacológico , Índice de Massa Corporal , Protocolos Clínicos
5.
CPT Pharmacometrics Syst Pharmacol ; 12(5): 610-618, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36597353

RESUMO

This workshop report summarizes the presentations and panel discussion related to the use of physiologically based pharmacokinetic (PBPK) modeling approaches for food effect assessment, collected from Session 2 of Day 2 of the workshop titled "Regulatory Utility of Mechanistic Modeling to Support Alternative Bioequivalence Approaches." The US Food and Drug Administration in collaboration with the Center for Research on Complex Generics organized this workshop where this particular session titled "Oral PBPK for Evaluating the Impact of Food on BE" presented successful cases of PBPK modeling approaches for food effect assessment. Recently, PBPK modeling has started to gain popularity among academia, industries, and regulatory agencies for its potential utility during bioavailability (BA) and/or bioequivalence (BE) studies of new and generic drug products to assess the impact of food on BA/BE. Considering the promises of PBPK modeling in generic drug development, the aim of this workshop session was to facilitate knowledge sharing among academia, industries, and regulatory agencies to understand the knowledge gap and guide the path forward. This report collects and summarizes the information presented and discussed during this session to disseminate the information into a broader audience for further advancement in this area.


Assuntos
Modelos Biológicos , Relatório de Pesquisa , Humanos , Equivalência Terapêutica , Disponibilidade Biológica , Desenvolvimento de Medicamentos , Medicamentos Genéricos
6.
Genet Med ; 25(2): 100335, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36507973

RESUMO

The U.S. Food and Drug Administration recently approved lonafarnib as the first treatment for Hutchinson-Gilford progeria syndrome (HGPS) and processing-deficient progeroid laminopathies. This approval was primarily based on a comparison of patients with HGPS treated with lonafarnib in 2 open-label trials with an untreated patient cohort. With up to 11 years of follow-up, it was found that the lonafarnib treated patients with HGPS had a survival benefit of 2.5 years compared with the untreated patients with HGPS. This large treatment effect on the objective endpoint of mortality using a well-matched comparator group mitigated potential sources of bias and together with other evidence, established compelling evidence of a drug effect with benefits that outweighed the risks. This approval is an example of U.S. Food and Drug Administration's regulatory flexibility for a rare disease while ensuring that standards for drug approval are met.


Assuntos
Progéria , Estados Unidos , Humanos , Progéria/tratamento farmacológico , Progéria/genética , Lamina Tipo A/genética , Piperidinas/uso terapêutico , Piridinas/uso terapêutico
7.
Clin Cancer Res ; 29(3): 508-512, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36112541

RESUMO

On September 15, 2021, the FDA granted accelerated approval to mobocertinib (Exkivity, Takeda Pharmaceuticals USA, Inc.) for the treatment of adult patients with locally advanced or metastatic non-small cell lung cancer (NSCLC) with EGFR exon 20 insertion mutations, as detected by an FDA-approved test, whose disease has progressed on or after platinum-based chemotherapy. The approval was based on data from Study AP32788-15-101 (NCT02716116), an international, non-randomized, multi-cohort clinical trial that included patients with locally advanced or metastatic NSCLC with EGFR exon 20 insertion mutations. The overall response rate in 114 patients whose disease had progressed on or after platinum-based chemotherapy was 28% [95% confidence interval (CI), 20%-37%] with a median duration of response of 17.5 months (95% CI, 7.4-20.3). The most common adverse reactions (>20%) were diarrhea, rash, nausea, stomatitis, vomiting, decreased appetite, paronychia, fatigue, dry skin, and musculoskeletal pain. Product labeling includes a Boxed Warning for QTc prolongation and torsades de pointes. This is the first approval of an oral targeted therapy for patients with advanced EGFR exon 20 insertion mutation-positive NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Adulto , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutagênese Insercional , Inibidores de Proteínas Quinases/efeitos adversos , Receptores ErbB/genética , Éxons , Mutação
8.
Clin Cancer Res ; 29(5): 838-842, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36206041

RESUMO

On April 17, 2020, the FDA granted accelerated approval to pemigatinib (PEMAZYRE, Incyte Corporation) for the treatment of adults with previously treated, unresectable locally advanced or metastatic cholangiocarcinoma with an FGFR2 fusion or other rearrangement as detected by an FDA-approved test. Approval was based on FIGHT-202 (NCT02924376), a multicenter open-label single-arm trial. Efficacy was based on 107 patients with locally advanced unresectable or metastatic cholangiocarcinoma whose disease had progressed on or after at least one prior therapy and had an FGFR2 gene fusion or rearrangement. Patients received pemigatinib, 13.5 mg orally, once daily for 14 consecutive days, followed by 7 days off therapy. Safety was based on a total of 466 patients, 146 of whom had cholangiocarcinoma and received the recommended dose. Efficacy endpoints were overall response rate (ORR) and duration of response (DOR) determined by an independent review committee using RECIST 1.1. ORR was 36% (95% confidence interval: 27-45). Median DOR was 9.1 months. The most common adverse reactions were hyperphosphatemia, alopecia, diarrhea, nail toxicity, fatigue, dysgeusia, nausea, constipation, stomatitis, dry eye, dry mouth, decreased appetite, vomiting, arthralgia, abdominal pain, hypophosphatemia, back pain, and dry skin. Ocular toxicity and hyperphosphatemia are important risks of pemigatinib. The recommended dosage is 13.5 mg orally once daily for 14 consecutive days followed by 7 days off therapy in 21-day cycles. FDA also approved the FoundationOne CDX (Foundation Medicine, Inc.) as a companion diagnostic for patient selection.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Hiperfosfatemia , Adulto , Humanos , Estados Unidos , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/genética , Ductos Biliares Intra-Hepáticos/patologia , Aprovação de Drogas , United States Food and Drug Administration , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética
9.
Clin Transl Sci ; 15(11): 2567-2575, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36066467

RESUMO

Human radiolabeled mass balance studies are an important component of the clinical pharmacology programs supporting the development of new investigational drugs. These studies allow for understanding of the absorption, distribution, metabolism, and excretion of the parent drug and metabolite(s) in the human body. Understanding the drug's disposition as well as metabolite profiling and abundance via mass balance studies can help inform the overall drug development program. A survey of the US Food and Drug Administration (FDA)-approved new drug applications (NDAs) indicated that about 66% of the drugs had relied on findings from the mass balance studies to help understand the pharmacokinetic characteristics of the drug and to inform the overall drug development program. When such studies were not available in the original NDA, adequate justifications were routinely provided. Of the 104 mass balance studies included in this survey, most of the studies were conducted in healthy volunteers (90%) who were mostly men (>86%). The studies had at least six evaluable participants (66%) and were performed using the final route(s) of administration (98%). Eighty-five percent of the studies utilized a dose within the pharmacokinetic linearity range with 54% of the studies using a dose the same as the approved dose. Nearly all studies were performed as a single-dose (97%) study using a fit-for-purpose radiolabeled formulation. In this analysis, we summarized the current practices for conducting mass balance studies and highlighted the importance of conducting appropriately designed human radiolabeled mass balance studies and the challenges associated with inadequately designed or untimely studies.


Assuntos
Drogas em Investigação , Farmacologia Clínica , Masculino , Estados Unidos , Humanos , Feminino , United States Food and Drug Administration , Preparações Farmacêuticas/metabolismo , Coleta de Dados , Aprovação de Drogas
10.
Methods Mol Biol ; 2486: 57-69, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35437718

RESUMO

Physiologically based pharmacokinetic (PBPK) modeling is a mechanistic computational model that can be used to predict a drug product's ADME (absorption, distribution, metabolism, and excretion) and pharmacokinetics (PK). In recent years, PBPK modeling and simulation has been used increasingly to address many biopharmaceutics and clinical pharmacology questions, such as the effect of formulations, intrinsic factors (age, organ dysfunction, etc.), and extrinsic factors (comedications, food) on the PK of an investigational drug product. In this chapter, we will briefly introduce various PBPK models for ADME prediction and general procedures for PBPK modeling and simulations. The readers are encouraged to read updated literature on new applications of PBPK modeling and simulation which is still an emerging area in pharmaceutical development.


Assuntos
Modelos Biológicos , Farmacologia Clínica , Biofarmácia , Simulação por Computador , Preparações Farmacêuticas/metabolismo , Farmacocinética
11.
Clin Cancer Res ; 28(12): 2488-2492, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35135839

RESUMO

On July 16, 2021, the FDA approved belumosudil, a kinase inhibitor, for adult and pediatric patients 12 years and older with chronic GvHD (cGvHD) after failure of at least two prior lines of systemic therapy. Approval was based on the results of Study KD025-213, which included 65 patients with cGvHD treated with belumosudil 200 mg daily in an open-label, single-arm cohort. Efficacy was determined by the overall response rate (ORR) through Cycle 7 Day 1, which included complete response (CR) or partial response (PR) according to the 2014 NIH consensus criteria, and durability of response. The ORR through Cycle 7 Day 1 was 75% [95% confidence interval (CI), 63-85]; 6% of patients achieved a CR, and 69% achieved a PR. The median duration of response was 1.9 months (95% CI, 1.2-2.9), and 62% (95% CI, 46-74) of responding patients remained alive without new systemic therapy for at least 12 months from response. The common adverse reactions were infections, asthenia, nausea, diarrhea, dyspnea, cough, edema, hemorrhage, abdominal pain, musculoskeletal pain, headache, phosphate decreased, gamma-glutamyl transferase increased, lymphocytes decreased, and hypertension. Additional study is warranted to confirm safety with long-term use.


Assuntos
Antineoplásicos , Doença Enxerto-Hospedeiro , Acetamidas , Adulto , Antineoplásicos/farmacologia , Criança , Aprovação de Drogas , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/etiologia , Humanos , Inibidores de Proteínas Quinases/efeitos adversos
12.
J Bone Miner Res ; 37(2): 256-264, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34738660

RESUMO

Romosozumab monoclonal antibody treatment works by binding sclerostin and causing rapid stimulation of bone formation while decreasing bone resorption. The location and local magnitude of vertebral bone accrual by romosozumab and how it compares to teriparatide remains to be investigated. Here we analyzed the data from a study collecting lumbar computed tomography (CT) spine scans at enrollment and 12 months post-treatment with romosozumab (210 mg sc monthly, n = 17), open-label daily teriparatide (20 µg sc, n = 19), or placebo (sc monthly, n = 20). For each of the 56 women, cortical thickness (Ct.Th), endocortical thickness (Ec.Th), cortical bone mineral density (Ct.bone mineral density (BMD)), cancellous BMD (Cn.BMD), and cortical mass surface density (CMSD) were measured across the first lumbar vertebral surface. In addition, color maps of the changes in the lumbar vertebrae structure were statistically analyzed and then visualized on the bone surface. At 12 months, romosozumab improved all parameters significantly over placebo and resulted in a mean vertebral Ct.Th increase of 10.3% versus 4.3% for teriparatide, an Ec.Th increase of 137.6% versus 47.5% for teriparatide, a Ct.BMD increase of 2.1% versus a -0.1% decrease for teriparatide, and a CMSD increase of 12.4% versus 3.8% for teriparatide. For all these measurements, the differences between romosozumab and teriparatide were statistically significant (p < 0.05). There was no significant difference between the romosozumab-associated Cn.BMD gains of 22.2% versus 18.1% for teriparatide, but both were significantly greater compared with the change in the placebo group (-4.6%, p < 0.05). Cortical maps showed the topographical locations of the increase in bone in fracture-prone areas of the vertebral shell, walls, and endplates. This study confirms widespread vertebral bone accrual with romosozumab or teriparatide treatment and provides new insights into how the rapid prevention of vertebral fractures is achieved in women with osteoporosis using these anabolic agents. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Conservadores da Densidade Óssea , Osteoporose Pós-Menopausa , Osteoporose , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Densidade Óssea , Conservadores da Densidade Óssea/uso terapêutico , Feminino , Humanos , Vértebras Lombares/diagnóstico por imagem , Osteoporose/tratamento farmacológico , Osteoporose Pós-Menopausa/tratamento farmacológico , Teriparatida/farmacologia , Teriparatida/uso terapêutico
13.
Clin Pharmacol Ther ; 111(3): 572-578, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34807992

RESUMO

Leveraging limited clinical and nonclinical data through modeling approaches facilitates new drug development and regulatory decision making amid the coronavirus disease 2019 (COVID-19) pandemic. Model-informed drug development (MIDD) is an essential tool to integrate those data and generate evidence to (i) provide support for effectiveness in repurposed or new compounds to combat COVID-19 and dose selection when clinical data are lacking; (ii) assess efficacy under practical situations such as dose reduction to overcome supply issues or emergence of resistant variant strains; (iii) demonstrate applicability of MIDD for full extrapolation to adolescents and sometimes to young pediatric patients; and (iv) evaluate the appropriateness for prolonging a dosing interval to reduce the frequency of hospital visits during the pandemic. Ongoing research activities of MIDD reflect our continuous effort and commitment in bridging knowledge gaps that leads to the availability of effective treatments through innovation. Case examples are presented to illustrate how MIDD has been used in various stages of drug development and has the potential to inform regulatory decision making.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , COVID-19 , Desenvolvimento de Medicamentos/métodos , Modelos Biológicos , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/farmacologia , COVID-19/epidemiologia , Aprovação de Drogas , Reposicionamento de Medicamentos , Humanos , Farmacologia Clínica/métodos , SARS-CoV-2/imunologia
14.
Clin Pharmacol Ther ; 111(3): 624-634, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34656075

RESUMO

Remdesivir (RDV) is the first drug approved by the US Food and Drug Administration (FDA) for the treatment of coronavirus disease 2019 (COVID-19) in certain patients requiring hospitalization. As a nucleoside analogue prodrug, RDV undergoes intracellular multistep activation to form its pharmacologically active species, GS-443902, which is not detectable in the plasma. A question arises that whether the observed plasma exposure of RDV and its metabolites would correlate with or be informative about the exposure of GS-443902 in tissues. A whole body physiologically-based pharmacokinetic (PBPK) modeling and simulation approach was utilized to elucidate the disposition mechanism of RDV and its metabolites in the lungs and liver and explore the relationship between plasma and tissue pharmacokinetics (PK) of RDV and its metabolites in healthy subjects. In addition, the potential alteration of plasma and tissue PK of RDV and its metabolites in patients with organ dysfunction was explored. Our simulation results indicated that intracellular exposure of GS-443902 was decreased in the liver and increased in the lungs in subjects with hepatic impairment relative to the subjects with normal liver function. In subjects with severe renal impairment, the exposure of GS-443902 in the liver was slightly increased, whereas the lung exposure of GS-443902 was not impacted. These predictions along with the organ impairment study results may be used to support decision making regarding the RDV dosage adjustment in these patient subgroups. The modeling exercise illustrated the potential of whole body PBPK modeling to aid in decision making for nucleotide analogue prodrugs, particularly when the active metabolite exposure in the target tissues is not available.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Fígado/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Modelos Biológicos , Insuficiência de Múltiplos Órgãos/metabolismo , Monofosfato de Adenosina/sangue , Monofosfato de Adenosina/metabolismo , Monofosfato de Adenosina/farmacocinética , Monofosfato de Adenosina/urina , Adulto , Alanina/sangue , Alanina/metabolismo , Alanina/farmacocinética , Alanina/urina , Humanos , Fígado/metabolismo , Pulmão/metabolismo , Masculino , Insuficiência de Múltiplos Órgãos/tratamento farmacológico , Distribuição Tecidual
16.
J Biomed Sci ; 28(1): 60, 2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34452635

RESUMO

BACKGROUND: Streptococcus pneumoniae is a common cause of post-influenza secondary bacterial infection, which results in excessive morbidity and mortality. Although 13-valent pneumococcal conjugate vaccine (PCV13) vaccination programs have decreased the incidence of pneumococcal pneumonia, PCV13 failed to prevent serotype 3 pneumococcal disease as effectively as other vaccine serotypes. We aimed to investigate the mechanisms underlying the co-pathogenesis of influenza virus and serotype 3 pneumococci. METHODS: We carried out a genome-wide screening of a serotype 3 S. pneumoniae transposon insertion mutant library in a mouse model of coinfection with influenza A virus (IAV) to identify the bacterial factors required for this synergism. RESULTS: Direct, high-throughput sequencing of transposon insertion sites identified 24 genes required for both coinfection and bacterial infection alone. Targeted deletion of the putative aminotransferase (PA) gene decreased bacterial growth, which was restored by supplementation with methionine. The bacterial burden in a coinfection with the PA gene deletion mutant and IAV in the lung was lower than that in a coinfection with wild-type pneumococcus and IAV, but was significantly higher than that in an infection with the PA gene deletion mutant alone. These data suggest that IAV infection alters host metabolism to benefit pneumococcal fitness and confer higher susceptibility to pneumococcal infection. We further demonstrated that bacterial growth was increased by supplementation with methionine or IAV-infected mouse lung homogenates. CONCLUSIONS: The data indicates that modulation of host metabolism during IAV infection may serve as a potential therapeutic intervention against secondary bacterial infections caused by serotype 3 pneumococci during IAV outbreaks in the future.


Assuntos
Coinfecção , Vírus da Influenza A/genética , Infecções por Orthomyxoviridae/virologia , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/genética , Transcriptoma , Animais , Coinfecção/microbiologia , Coinfecção/virologia , Feminino , Genoma Bacteriano , Camundongos , Camundongos Endogâmicos BALB C
17.
CPT Pharmacometrics Syst Pharmacol ; 10(9): 973-982, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34218521

RESUMO

A critical step to evaluate the potential in vivo antiviral activity of a drug is to connect the in vivo exposure to its in vitro antiviral activity. The Anti-SARS-CoV-2 Repurposing Drug Database is a database that includes both in vitro anti-SARS-CoV-2 activity and in vivo pharmacokinetic data to facilitate the extrapolation from in vitro antiviral activity to potential in vivo antiviral activity for a large set of drugs/compounds. In addition to serving as a data source for in vitro anti-SARS-CoV-2 activity and in vivo pharmacokinetic information, the database is also a calculation tool that can be used to compare the in vitro antiviral activity with in vivo drug exposure to identify potential anti-SARS-CoV-2 drugs. Continuous development and expansion are feasible with the public availability of this database.


Assuntos
Antivirais/farmacologia , Bases de Dados de Produtos Farmacêuticos , SARS-CoV-2/efeitos dos fármacos , Antivirais/farmacocinética , Reposicionamento de Medicamentos/métodos , Humanos
18.
J Clin Pharmacol ; 61 Suppl 1: S60-S69, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34185906

RESUMO

Model-informed drug development (MIDD) has been a powerful and efficient tool applied widely in pediatric drug development due to its ability to integrate and leverage existing knowledge from different sources to narrow knowledge gaps. The dose selection is the most common MIDD application in regulatory submission related to pediatric drug development. This article aims to give an overview of the 3 broad categories of use of MIDD in pediatric dose selection: leveraging from adults to pediatric patients, leveraging from animals to pediatric patients, and integrating mechanism in infants and neonates. Population pharmacokinetic analyses with allometric scaling can reasonably predict the clearance in pediatric patients aged >5 years. A mechanistic-based approach, such as physiologically based pharmacokinetic accounting for ontogeny, or an allometric model with age-dependent exponent, can be applied to select the dose in pediatric patients aged ≤2 years. The exposure-response relationship from adults or from other drugs in the same class may be useful in aiding the pediatric dose selection and benefit-risk assessment. Increasing application and understanding of use of MIDD have contributed greatly to several policy developments in the pediatric field. With the increasing efforts of MIDD under the Prescription Drug User Fee Act VI, bigger impacts of MIDD approaches in pediatric dose selection can be expected. Due to the complexity of model-based analyses, early engagement between drug developers and regulatory agencies to discuss MIDD issues is highly encouraged, as it is expected to increase the efficiency and reduce the uncertainty.


Assuntos
Desenvolvimento de Medicamentos , Modelos Biológicos , Pediatria/métodos , Criança , Sistema Enzimático do Citocromo P-450/metabolismo , Interpretação Estatística de Dados , Relação Dose-Resposta a Droga , Humanos , Farmacocinética
19.
Clin Cancer Res ; 27(15): 4142-4146, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33712511

RESUMO

On April 10, 2020, the FDA approved selumetinib (KOSELUGO, AstraZeneca) for the treatment of pediatric patients 2 years of age and older with neurofibromatosis type 1 who have symptomatic, inoperable plexiform neurofibromas. Approval was based on demonstration of a durable overall response rate per Response Evaluation in Neurofibromatosis and Schwannomatosis criteria and supported by observed clinical improvements in plexiform neurofibroma-related symptoms and functional impairments in 50 pediatric patients with inoperable plexiform neurofibromas in a single-arm, multicenter trial. The overall reponse rate per NCI investigator assessment was 66% (95% confidence interval, 51-79) with at least 12 months of follow-up. The median duration of response was not reached, and 82% of responding patients experienced duration of response ≥12 months. Clinical outcome assessment endpoints provided supportive efficacy data. Risks of selumetinib are consistent with MAPK (MEK) inhibitor class effects, including ocular, cardiac, musculoskeletal, gastrointestinal, and dermatologic toxicities. Safety was assessed across a pooled database of 74 pediatric patients with plexiform neurofibromas and supported by adult and pediatric selumetinib clinical trial data in cancer indications. The benefit-risk assessment for selumetinib in patients with inoperable plexiform neurofibromas was considered favorable.


Assuntos
Benzimidazóis/uso terapêutico , Aprovação de Drogas , Neurofibroma Plexiforme/tratamento farmacológico , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Estados Unidos
20.
J Clin Pharmacol ; 61(6): 782-788, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33460193

RESUMO

The key parameters necessary to predict drug-drug interactions (DDIs) are intrinsic clearance (CLint ) and fractional contribution of the metabolizing enzyme toward total metabolism (fm ). Herein, we summarize the accumulated knowledge from 53 approved new drug applications submitted to the Office of Clinical Pharmacology, US Food and Drug Administration, from 2016 to 2018 that contained physiologically based pharmacokinetic (PBPK) models to understand how in vitro data are used in PBPK models to assess drug metabolism and predict DDIs. For evaluation of CLint and fm , 29 and 20 new drug applications were included for evaluation, respectively. For CLint , 86.2% of the PBPK models used modified values based on in vivo data with modifications ranging from -82.5% to 2752.5%. For fm , 45.0% of the models used modified values with modifications ranging from -28% to 178.6%. When values for CLint were used from in vitro testing without modification, the model resulted in up to a 14.3-fold overprediction of the area under the concentration-time curve of the substrate. When values for fm from in vitro testing were used directly, the model resulted in up to a 2.9-fold underprediction of its DDI magnitude with an inducer, and up to a 1.7-fold overprediction of its DDI magnitude with an inhibitor. Our analyses suggested that the in vitro system usually provides a reasonable estimation of fm when the drug metabolism by a given CYP pathway is more than 70% of the total clearance. In vitro experiments provide important information about basic PK properties of new drugs and can serve as a starting point for building a PBPK model. However, key PBPK parameters such as CLint and fm still need to be optimized based on in vivo data.


Assuntos
Interações Medicamentosas/fisiologia , Técnicas In Vitro/estatística & dados numéricos , Modelos Biológicos , United States Food and Drug Administration/estatística & dados numéricos , Área Sob a Curva , Simulação por Computador , Aprovação de Drogas/estatística & dados numéricos , Humanos , Técnicas In Vitro/normas , Taxa de Depuração Metabólica , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA