Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9958, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38693197

RESUMO

Numerous plant parasitic nematodes (PPNs) have the potential to inflict considerable damage on agricultural crops. Through a comprehensive survey aimed at identifying PPNs affecting crops, cyst nematodes were isolated from the rhizosphere soil of buckwheat (Fagopyrum esculentum). Employing both molecular and morphological techniques, this cyst nematode was conclusively identified as Heterodera ripae. Notably, this represents the first documented occurrence of this particular cyst nematode species within the rhizosphere soil of F. esculentum.


Assuntos
Fagopyrum , Rizosfera , Tylenchoidea , Fagopyrum/parasitologia , Animais , Tylenchoidea/genética , Solo/parasitologia , Doenças das Plantas/parasitologia , Filogenia
2.
Artigo em Inglês | MEDLINE | ID: mdl-38713352

RESUMO

The co-occurrence of heavy metals and microplastics (MPs) is an emerging issue that has attracted considerable attention. However, the interaction of nickel oxide nanoparticle (nano-NiO) combined with MPs in soil was poorly researched. Here, experiments were conducted to study the influence of nano-NiO (200 mg/kg) and polyethylene (PE) MPs with different concentrations (0.1, 1, and 10%) and sizes (13, 50, and 500 µm) on earthworms for 28 days. Compared to control, the damage was induced by PE and nano-NiO, which was evaluated by biomarker Integrated Biomarker Response index: version 2 (IBRv2) based on six biomarkers including SOD, POD, CAT, MDA, AChE, Na+/K+-ATPase and cellulase. The majority of the chosen biomarkers showed significant but complicated responses with increasing contaminant concentrations after 28 days of exposure. Moreover, the joint effect was assessed as antagonism by the effect addition index (EAI). Overall, this work expands our understanding of the combined toxicity of PE and nano-NiO in soil ecosystems.

3.
Sci Rep ; 14(1): 7253, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538666

RESUMO

Due to the highly conserved structure, animal mitochondrial genome (mtDNA) is widely used in classification, evolution, phylogeny, population genetic structure and other fields. We reported on the five circle multipartite mtDNAs of a newly described species of Globodera, Globodera vulgaris (Gv) from potatoes in China. The results showed that the mtDNA of Gv was obtained through second- and third-generation sequencing, with a total length of 42,995 bp. It contained 12 protein-coding genes, two rRNA genes and 17 tRNA genes, which were distributed in different subgenomic circles. Comparison of the differences in mtDNA among Gv, G. rostochiensis, G. pallida and G. ellingtonae showed that the size and arrangement of the genes in the mtDNA of the genus Globodera were variable and not conserved. The codon usage bias of the mitochondrial protein-coding gene of Gv showed that Gv might have originated from locally and more primitive group of existing Globodera. Based on the cytochrome c oxidase subunits I genes (COX1) and the nicotinamide adenine dinucleotide dehydrogenase subunits I genes (ND1), and the results showed that Gv was clustered with Globodera spp. according to the COX1 and ND1 in scmtDNA-V, while Gv was clustered with Meloidogyne spp. according to ND1 in scmtDNA-III. The results of this study provided a new basis for understanding the multipartite structure of mtDNA as a phylogenetic and taxonomic feature of the genus Globodera. The number of subgenomic circles is a diagnostic feature of species and the arrangement order and size of mitochondrial protein-coding genes also have important application value in species identification within the genus.


Assuntos
Genoma Mitocondrial , Tylenchoidea , Animais , Genoma Mitocondrial/genética , Filogenia , Tylenchoidea/genética , DNA Mitocondrial/genética , Proteínas Mitocondriais/genética
4.
Lasers Surg Med ; 56(2): 218-225, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38105476

RESUMO

OBJECTIVES: To investigate the wound healing of rabbit cornea following infrared laser irradiations at the wavelengths of 1.319 and 10.6 µm. MATERIALS AND METHODS: Twelve New Zealand rabbits were selected to establish a corneal injury model. The right and left eyes were irradiated with a neodymium-doped yttrium aluminum garnet laser at the wavelength of 1.319 µm (140 J/cm2 ) for 0.7 s and a CO2 laser at the wavelength of 10.6 µm (5.94 J/cm2 ) for 0.14 s, respectively. The incident spot diameter was 3 mm. Optical coherence tomography (OCT) was used to monitor injuries at 0 h, 0.5 h, 1 h, 3 h, 6 h, 12 h, 18 h, 24 h, 30 h, 36 h, 42 h, 48 h, 54 h, 60 h, 66 h, 3 d, 7 d, 14 d, 28 d, 3 m, and 6 m postexposure. Meanwhile, slit-lamp microscopy and histopathology were performed at 6 h, 24 h, 3 d, 7 d, 14 d, 28 d, 3 m, and 6 m postexposure. RESULTS: After the two types of infrared laser injuries, distinct white circular lesions on the corneal surface were directly observed. Deeper corneal injury, more severe edema, and faster migration of new epithelium were found for the wavelength of 1.319 µm, compared to the wavelength of 10.6 µm. CONCLUSIONS: OCT combined with histopathology and slit-lamp microscopy can clearly observe the dynamic process of corneal wound healing after infrared laser irradiation. The damage characteristics for the two different wavelengths were visibly different, but the whole wound healing process was similar. The obtained results may provide references for the diagnosis, treatment, and evaluation of laser-induced damages.


Assuntos
Lesões da Córnea , Lasers de Estado Sólido , Animais , Coelhos , Córnea/diagnóstico por imagem , Córnea/cirurgia , Cicatrização , Luz , Lasers de Estado Sólido/uso terapêutico
5.
J Fungi (Basel) ; 9(12)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38132726

RESUMO

The current investigation aimed to isolate and identify predatory fungal strains and evaluate their efficacy in mitigating the effects of plant-parasitic nematodes. We successfully isolated three distinct nematophagous fungal strains from soil samples, identified as Arthrobotrys megalosporus, A. oligospora, and A. sinensis, using conventional and molecular identification methodologies. In vitro trials illustrated the high capture efficiency of these fungi against plant-parasitic nematodes. Over an exposure period of 48 h to Aphelenchoides besseyi, Bursaphelenchus xylophilus, and Ditylenchus destructor, A. megalosporus (GUCC220044) displayed predation rates of 99.7%, 83.0%, and 21.1%, respectively. A. oligospora (GUCC220045) demonstrated predation rates of 97.3%, 97.3%, and 54.6%, and A. sinensis (GUCC220046) showed rates of 85.1%, 68.3%, and 19.0% against the same cohort of nematodes. The experimental outcomes substantiate that all three identified fungal strains demonstrate predatory activity against the tested nematodes, albeit with varying efficiencies.

6.
Lasers Surg Med ; 55(9): 846-852, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37655759

RESUMO

OBJECTIVES: Previous report shows that corneal spot size is an important influence factor on damage threshold induced by supercontinumm (SC) source. However, damage thresholds were determined for the spot size of only 0.37 mm due to the low output of the employed SC source at that time. The objectives of this study are to determine the lowest possible corneal damage threshold at a large corneal spot size using a more powerful SC source and provide data for the future possible refinements of laser safety standards. MATERIALS AND METHODS: A series of experiments was conducted in the New Zealand white rabbit model to determine the corneal damage threshold induced by a 900-2000 nm SC source, with corneal 1/e beam diameter of about 1.2 mm. Slit-lamp biomicroscope was employed to reveal the corneal damage characteristics. By employing the action spectra determined through the analysis of current laser safety guidelines and standards, the effective damage threshold could be calculated. RESULTS: The determined damage threshold given in terms of the peak radiant exposure for the exposure duration of 0.14 s was 44.3 J/cm2 . At threshold level, corneal damages involved the epithelium and the shallower stroma. The safety factor between the effective damage threshold and the corresponding maximum permissible exposure (MPE) was about 45. CONCLUSIONS: Present corneal MPEs in the wavelength range of 700-1200 nm may be conservative and corneal damage thresholds for the infrared A wavelengths should be determined in future studies.

7.
J Fungi (Basel) ; 9(2)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36836361

RESUMO

Potatoes rank third in terms of human consumption after rice and wheat. Globodera spp. are significant pests of potato crop worldwide. Globodera rostochiensis was found in Weining County, Guizhou Province, China, in 2019. We collected soil from the rhizosphere zone from infected potato plants and separated mature cysts through simple floatation and sieving methods. The selected cysts were surface-sterilized, and the colonized fungi were isolated and purified. At the same time, the preliminary identification of fungi and fungi parasites on the cysts of nematodes was carried out. This study aimed to define the species and frequency of fungi-colonizing cysts of G. rostochiensis collected from Weining County, Guizhou Province, China, and provide a basis for the control of G. rostochiensis. As a result, 139 strains of colonized fungi were successfully isolated. Multigene analyses showed that these isolates included 11 orders, 17 families, and 23 genera. The genera Fusarium (with a separation frequency of 59%), Penicillium (11%), Edenia (3.6%), and Paraphaeosphaeria (3.6%) were the most frequently occurring. Among the 44 strains, 27 had a colonization rate of 100% on the cysts of G. rostochiensis. Meanwhile, the functional annotation of 23 genera indicated that some fungi have multitrophic lifestyles combining endophytic, pathogenic, and saprophytic behavior. In conclusion, this study showed the species composition and lifestyle diversity of colonized fungi from G. rostochiensis and demonstrated these isolates as potential sources of biocontrol agents. Colonized fungi were isolated from G. rostochiensis for the first time in China, and the taxonomic diversity of fungi from G. rostochiensis was clarified.

8.
Biodivers Data J ; 11: e100684, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38327293

RESUMO

Plant-parasitic nematodes (PPNs) are significant pests that result in considerable economic losses in global crop production. Due to the high toxicity of chemical nematicides, there is a need to develop new strategies for nematode control. In this context, nematophagous fungi may offer a viable option for biological control. Two fungal strains (GUCC2212 and GUCC2232) were isolated from cysts of Globodera sp., identified as Neocosmosporastercicola. The fungal filtrates of the strains were evaluated for their nematicidal activity against three species of PPNs: Aphelenchoidesbesseyi, Bursaphelenchusxylophilus and Ditylenchusdestructor. The fermentation filtrates of two strains exhibited substantial toxicity towards the evaluated nematodes, with mortality rates reaching up to 100% within 72 h. Concurrently, N.stercicola also demonstrated predatory and parasitic behavior. The eggs of Globodera sp. were parasitized by the two strains. N.stercicola represents a newly recorded species in China and a novel nematophagous species. In conclusion, the two strains of N.stercicola show promise as biocontrol agents for PPNs management.

9.
Front Microbiol ; 13: 942302, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187972

RESUMO

The U-box family is one of the main E3 ubiquitin ligase families in plants. The U-box family has been characterized in several species. However, genome-wide gene identification and expression profiling of the U-box family in response to abiotic stress in Sorghum bicolor remain unclear. In this study, we broadly identified 68 U-box genes in the sorghum genome, including 2 CHIP genes, and 1 typical UFD2 (Ub fusion degradation 2) gene. The U-box gene family was divided into eight subclasses based on homology and conserved domain characteristics. Evolutionary analysis identified 14, 66, and 82 U-box collinear gene pairs in sorghum compared with arabidopsis, rice, and maize, respectively, and a unique tandem repeat pair (SbPUB26/SbPUB27) is present in the sorghum genome. Gene Ontology (GO) enrichment analysis showed that U-box proteins were mainly related to ubiquitination and modification, and various stress responses. Comprehensive analysis of promoters, expression profiling, and gene co-regulation networks also revealed that many sorghum U-box genes may be correlated with multiple stress responses. In summary, our results showed that sorghum contains 68 U-box genes, which may be involved in multiple abiotic stress responses. The findings will support future gene functional studies related to ubiquitination in sorghum.

10.
Artigo em Inglês | MEDLINE | ID: mdl-35872239

RESUMO

Widely use of Titanate Nanotubes (TNTs) as remediation materials for heavy metal polluted water and soil lead to their release into the soil environment, persistently threatening faunal biodiversity and the entire environment. Growth inhibition rates (GIR) and specific growth rates (SGR) are used to evaluate the effect of TNTs on earthworm growth, and the integrated biomarker response (IBR) index is used to comprehensively evaluate the toxicity of eight biomarkers (Protein-body mass ratio, MDA, SOD, CAT, POD, Cellulase, AChE, and Na+/K+-ATPase) on earthworms exposed to TNTs contaminated soil by concentrations of CK, 50, 250, 500 and 2500 mg TNTs/kg dry soil. Results show that TNTs significantly inhibit the growth of earthworms (p < 0.05), and GIR reaches up to 52.34 % at 2500 mg TNTs/kg dry soil for 28 days. IBR index has a dose-time relationship, which indicates that exposure time and concentration of TNTs contaminated soil affect the toxicity degree of contaminant to earthworms.


Assuntos
Nanotubos , Oligoquetos , Poluentes do Solo , Animais , Biomarcadores , Nanotubos/toxicidade , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
11.
Environ Sci Pollut Res Int ; 29(23): 35217-35229, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35048350

RESUMO

Polyaniline nanorods (PANRs) are typical one-dimensional nanomaterials (1D NMs), which are widely used in medicine, batteries and water treatment, etc. Applications of PANRs will eventually enter the soil environment, but their ecotoxicity has been barely reported. Therefore, we measured earthworm biomass, earthworm biomarkers and soil enzymes to investigate the ecotoxicity of PANRs. The result of positive and increasing growth inhibition rates (GIR) showed that PANRs inhibited earthworm growth. As for earthworm biomarkers, PANRs caused a decrease in protein content, indicating that PANRs stress would increase earthworm energy consumption. Except for the 7th day, the activities of SOD, CAT and POD consistently increased, suggesting that PANRs activated the earthworm antioxidant system. The continually augment of MDA content indicated that PANRs stress would cause earthworm lipid damage. Na+-K+-ATPase increased with an excellent dose-time relationship. Differently, cellulase and AChE activities promoted at low concentrations and inhibited at high concentrations. The positive and dose-dependent IBRv2 indicated that the higher the concentrations of PANRs, the greater the ecotoxicity to earthworms. PANRs inhibited the soil enzyme activities such as sucrase, neutral phosphatase, protease and urease, while induced catalase activity in a dose-dependent manner. Earthworm addition reduced catalase activity by 10.74-29.99%, but improved other soil enzymes activities, demonstrating that earthworms played a positive role in regulating soil enzyme activity. GMean and T-SQI consistently increased due to earthworm activity, meaning a higher soil microbial functional diversity. Generally, this study provided data support for future PANRs toxicity studies, but their toxicity mechanisms still need to be further studied.


Assuntos
Nanoestruturas , Nanotubos , Oligoquetos , Poluentes do Solo , Compostos de Anilina , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Catalase/metabolismo , Malondialdeído/metabolismo , Nanoestruturas/toxicidade , Solo , Poluentes do Solo/análise , Superóxido Dismutase/metabolismo
12.
Plant Dis ; 2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35037482

RESUMO

Magnolia grandiflora is a widely cultivated ornamental tree in China. In June 2020, a leaf blight disease was observed on M. grandiflora in Guizhou University (26° 44' 57'' N, 106° 65' 94'' E) in Guiyang, China. The initial symptoms on leaves were expanding round necrotic lesions with a grey center and dark brown edge, and twigs were withered when the disease was serious. Of the 100 plants surveyed 65% had symptoms. To isolate the potential causal pathogen, diseased leaves were collected from an M. grandiflora tree at Guizhou University. Isolations from made form the junction between healthy and symptomatic tissue and disinfested by immersing in 75% ethanol for 30 seconds, 3% NaOCl for 2 minutes, and then washed 3 times in sterile distilled water. Symptomatic tissue was then plated on potato dextrose agar (PDA) and incubated at 25ºC with 12-hour light for 3-5 days. Three isolates (GUCC 21235.1, GUCC 21235.2 and GUCC 21235.3) were obtained. Colonies on PDA after 7 d were dark brown, pycnidia embedded in the mydelium were dark brown to black, single and separated. Conidiophores were transparent measuring 7-12.5 × 2.5-4.5 µm (mean = 9.5 × 3.6 µm, n = 30) in length. Conidia were transparent becoming brown when mature with a diaphragm, with round ends measuring, 21-27 × 10-15 µm (mean = 23.6 × 12.6 µm, n = 30). To confirm the pathogen by molecular characterization, four genes or DNA fragments, ITS, LSU, tef1 and ß-tubulin, were amplified using the following primer pairs: ITS4-F/ ITS5-R (White et al., 1990), LR0R/ LR5 (Rehner & Samuels, 1994), EF1-688F/ EF1-986R (Carbone & Kohn, 1999) and Bt2a/ Bt2b (O'Donnell & Cigelnik, 1997). The sequences of four PCR fragments of GUCC 21235.1 were deposited in GenBank, and the accession numbers were MZ519778 (ITS), MZ520367 (LSU), MZ508428 (tef1) and MZ542354 (ß-tubulin). Bayesian inference was performed based on a concatenated dataset of ITS, LSU, tef1 and ß-tubulin gene using MrBayes 3.2.10, and the isolates GUCC 21235.1 formed a single clade with the reference isolates of Diplodia mutila (Diplodia mutila strain CBS 112553). BLASTn analysis indicated that the sequences of ITS, LSU, tef1 and ß-tubulin revealed 100% (546/546 nucleotides), 99.82% (568/569 nucleotides), 100% (302/302 nucleotides), and 100% (437/437 nucleotides) similarity with that of D. mutila in GenBank (AY259093, AY928049, AY573219 and DQ458850), respectively. For confirmation of the pathogenicity of this fungus, a conidial suspension (1×105 conidia mL-1) was prepared from GUCC 21235.1, and healthy leaves of M. grandiflora trees were surface-disinfested by 75% ethanol, rinsed with sterilized distilled water and dried by absorbent paper. Small pieces of filter paper (5 mm ×5 mm), dipped with 20 µL conidial suspension (1×105 conidia mL-1) or sterilized distilled water (as control), were placed on the bottom-left of the leaves for inoculation. Then the leaves were sprayed with sterile distilled water, wrapped with a plastic film and tin foil successively to maintain high humidity in the dark dark. After 36 h, the plastic film and tin foil on the leaves was removed, and the leaves were sprayed with distilled water three times each day at natural condition (average temperature was about 25 °C, 14 h light/10 h dark). After 10 days of inoculation, the same leaf blight began to appear on the leaves inoculated with conidial suspension. No lesion was appeared on the control leaves. The fungus was re-isolated from the symptomatic tissue. Based on the morphological information and molecular characterization, the isolate GUCC 21235.1 is D. mutila. Previous reports indicated that D. mutila infects a broad host range and gives rise to a canker disease of olive, apple and jujube (Úrbez-Torres et al., 2013; Úrbez-Torres et al., 2016; Feng et al., 2019). This is the first report of leaf blight on M. grandiflora caused by D. mutila in China.

13.
BMC Genomics ; 23(1): 28, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34991465

RESUMO

BACKGROUND: Histone deacetylases (HDACs) play an important role in the regulation of gene expression, which is indispensable in plant growth, development, and responses to environmental stresses. In Arabidopsis and rice, the molecular functions of HDACs have been well-described. However, systematic analysis of the HDAC gene family and gene expression in response to biotic and abiotic stresses has not been reported for sorghum. RESULTS: We conducted a systematic analysis of the sorghum HDAC gene family and identified 19 SbHDACs mainly distributed on eight chromosomes. Phylogenetic tree analysis of SbHDACs showed that the gene family was divided into three subfamilies: RPD3/HDA1, SIR2, and HD2. Tissue-specific expression results showed that SbHDACs displayed different expression patterns in different tissues, indicating that these genes may perform different functions in growth and development. The expression pattern of SbHDACs under different stresses (high and low temperature, drought, osmotic and salt) and pathogen-associated molecular model (PAMPs) elf18, chitin, and flg22) indicated that SbHDAC genes may participate in adversity responses and biological stress defenses. Overexpression of SbHDA1, SbHDA3, SbHDT2 and SbSRT2 in Escherichia coli promoted the growth of recombinant cells under abiotic stress. Interestingly, we also showed that the sorghum acetylation level was enhanced when plants were under cold, heat, drought, osmotic and salt stresses. The findings will help us to understand the HDAC gene family in sorghum, and illuminate the molecular mechanism of the responses to abiotic and biotic stresses. CONCLUSION: We have identified and classified 19 HDAC genes in sorghum. Our data provides insights into the evolution of the HDAC gene family and further support the hypothesis that these genes are important for the plant responses to abiotic and biotic stresses.


Assuntos
Sorghum , Regulação da Expressão Gênica de Plantas , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Moléculas com Motivos Associados a Patógenos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sorghum/genética , Sorghum/metabolismo , Estresse Fisiológico/genética
14.
BMC Microbiol ; 21(1): 323, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809566

RESUMO

BACKGROUND: Plant parasitic nematodes (PPNs) are responsible for causing many plant diseases and are extremely difficult to control at present. Currently, due to the negative effects of chemical agents on the environment and human health, the development of new biological pesticides has become an important part of plant nematode control. Nematophagous fungi refers to a class of fungi that kill plant nematodes. Notably, a large number of nematophagous fungi resources remain to be studied. The objective of our study was to use in vitro screening to identify nematophagous fungi and select strains that were highly active against nematodes, providing a primary research for the development and utilization of new nematophagous fungi. RESULTS: A new nematophagous fungal strain (GUCC2219) was isolated from cysts of possibly Globodera spp. and Heterodera spp., identified as Volutella citrinella. The hyphae of V. citrinella produced ring structures of variable size and exhibited predatory and nematicidal activity. The hyphal predation rates (in vitro) against three species of nematodes, Aphelenchoides besseyi, Bursaphelenchus xylophilus, and Ditylenchus destructor, averaged 59.45, 33.35, and 50.95%, respectively, while the fermentation broth produced by the fungus exhibited mortality rates of 100, 100, and 55.63%, respectively, after 72 h. CONCLUSION: V. citrinella is a new strain with nematophagous properties, which are a novel discovery. At the same time, this is the first report of nematicidal and nematode predation activity in the genus Volutella.


Assuntos
Hypocreales/fisiologia , Nematoides/microbiologia , Doenças das Plantas/parasitologia , Solanum tuberosum/parasitologia , Animais , China , Nematoides/crescimento & desenvolvimento , Controle Biológico de Vetores
15.
J Health Econ ; 80: 102536, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34607121

RESUMO

This paper studies a general kidney exchange model with compatible patient-donor pairs, incompatible patient-donor pairs, single donors, and patients on the waiting list. We derive an explicit formula of the maximal number of feasible kidney transplants under several sizes of cycles and chains of exchange, analyze the effect of different ways of exchange on efficiency, and provide substantial simulation results based on the USA data. Our results further show that kidney exchange can be decentralized for relatively large populations, and that allowing compatible pairs and single donors to exchange with incompatible pairs can significantly increase the number of feasible kidney transplants. A more general model of two-category type-compatible exchanges is also established.


Assuntos
Transplante de Rim , Obtenção de Tecidos e Órgãos , Simulação por Computador , Humanos , Rim , Doadores Vivos , Listas de Espera
16.
Saudi J Biol Sci ; 28(6): 3526-3533, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34121895

RESUMO

Virus is the most menacing factor for plant, which causes enormous economic losses in agriculture worldwide. Tobacco mosaic virus is most hazardous virus among the plants that can spread through biological and non-biological sources. TMV is ancient virus that causes huge economic losses to pepper cucumber ornamental crops and tobacco. It can be controlled by reducing the population of vector through pesticide application. However, the rapid usage of synthetic chemicals causes environmental pollution and destroys our ecosystem. Consequently, different approaches just like natural derivatives should be adopted for the environmental friendly management for TMV. This in vitro study demonstrated the potential role of natural metabolites such as poultry manure and plant extracts such as salicylic acid and citric acid for the control of TMV. Two different concentrations of poultry manure 60G and 30G were used. Poultry manure was mixed with the soil at the time of sowing. Disease severity was minimum at maximum concentration as compared to the control. Meanwhile, two different concentrations of salicylic acid and citric acid 60% and 90% were applied by foliar sprayer after three-leaf stages. Disease severity was observed after 5, 10, 15, 20, 25, and 30 days after disease inoculation. Here also maximum concentration showed the minimum disease severity and higher concentration of both animal and plants extracts were used for following experiment. Quantitative real-time PCR (RT-qPCR) results demonstrated that different plant defense-related genes such as PR1a, PAL, PR5, NPR1, PRIb, and PDF1.2 were up-regulated. Furthermore, applications of each treatment-induced systemic resistance against a wide range of pathogen including TMV and fungal pathogen Botrytis cinerea.

17.
Biodivers Data J ; 9: e63643, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33692649

RESUMO

BACKGROUND: Thunbergia grandiflora belongs to the family Acanthaceae and is a widely distributed dicotyledonous plant in tropical and subtropical regions. Three isolates of Allophoma (Dothideomycetes, Pleosporales, Didymellaceae) were collected from leaves of T. grandiflora in Guangxi Province, China. NEW INFORMATION: Phylogenetic analyses of a combined ITS-LSU-rpb2-tub2 dataset indicate that one of our three strains represents an undescribed species with close affinity to A. minor and the other two strains clustered amongst other isolates of A. pterospermicola. Evidence from morphology and sequence analysis indicates that GUCC 2070.7 is a new species that we introduce here as A. thunbergiae. This is the first report about taxa of Allophoma from this host plant.

18.
Chemosphere ; 273: 129496, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33524758

RESUMO

Vermiremediation on improvement of antimony (Sb) and cadmium (Cd) contaminated soil was less reported. In this study, earthworm Eisenia fetida was exposed into soil spiked with Sb and Cd and their mixture for 30 days, and then we measured multiple soil enzyme activities and bacteria communities via enzymatic reaction and high-throughput sequencing of 16 S rRNA genes. The results showed that Sb and Cd at high treatment levels inhibited the activities of urease, neutral phosphatase and protease significantly, but earthworm could promote the activities of urease and neutral phosphatase by 17.75%-121.91% and 1.46%-118.97%, respectively. However, earthworms inhibited catalase and had no effect on protease. The Geometric Mean Index suggested that earthworms led to a higher soil biochemistry function. According to a taxonomic analysis, bacterial community structure predominantly consisted of phylum Proteobacteria, Actinobacteria, Firmicutes, etc. and class Gammaproteobacteria, Actinobacteria, Alphaproteobacteria, etc.; furthermore, Pielou index and Shannon index (Alpha diversity in the habitat) indicated that bacteria diversity and evenness increased in the presence of earthworms. The heating map revealed that earthworms made genus Sphingomonas, Flavobacterium, etc. and species Sphingomonas jaspsi, Conexibacter, etc. dominate. Overall, earthworm is a suitable remediation species to improve the ecological function of heavy metal polluted soil. However, the specific mechanism and causal relationship of how earthworm to control enzyme activity and bacteria community remained to be explored.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Antimônio , Cádmio/análise , Cádmio/toxicidade , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Sphingomonas
19.
Biodivers Data J ; 9: e60604, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33510578

RESUMO

BACKGROUND: Syzygium samarangense (Wax apple) is an important tropical fruit tree with high economic and nutrient value and is widely planted in the tropics or subtropics of Asia. Post-harvest water-soaked brown lesions were observed on mature fruits of ornamental wax apples in Chiang Rai Province, Thailand. A fungus with morphological characters, similar to Lasiodiplodia, was consistently isolated from symptomatic fruits. Phylogenetic analyses, based on ITS, LSU, TEF1-a and tub2, revealed that our isolates were closely related to, but phylogenetically distinct from, Lasiodiplodia rubropurpurea. NEW INFORMATION: Morphological comparisons indicated that pycnidia and conidiogenous cells of our strains were significantly larger than L. rubropurpurea. Comparisons of base-pair differences in the four loci confirmed that the species from wax apple was distinct from L. rubropurpurea and a new species, L. syzygii sp. nov., is introduced to accommodate it. Pathogenicity tests confirmed the newly-introduced species as the pathogen of this post-harvest water-soaked brown lesion disease on wax apples.

20.
Ecotoxicol Environ Saf ; 207: 111278, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32979841

RESUMO

Information on soil antimony (Sb) toxicity to earthworm Eisenia fetida (Savingy) is limited. This ecotoxicology study was designed to quantify the soil Sb toxicity to earthworm E. fetida before and after aging process, establishing dose-effect relationship between Sb content and mortality. Results of the avoidance test and acute test showed that the values of net avoidance response, escape rate and mortality were generally decreased in aged treatment compared to that in fresh treatment, respectively from 93.33% to 66.67%, 36.67% to 13.33% and 100% to 53.33% (15 d) taking TL800 (treatment level of 800 mg/kg) for example, meanwhile the values of median lethal content (LC50) at 72 h, 7 d and 15 d were respectively increased from 355.27 mg/kg to 2324.55 mg/kg, 322.19 mg/kg and 1743.19 mg/kg and 282.74 mg/kg to 745.94 mg/kg, indicating that aging process could reduce the Sb acute toxicity to earthworm. According to a three-step sequential extraction procedure, the bioavailable Sb ranged from 24.45% to 43.24% and 16.97% to 27.70% in fresh treatment and aged treatment, respectively, and the mortality of earthworm for 24 h decreased with the decrease of the content of mild acid-soluble antimony (which decreased averagely from 23.09% to 14.00%), which was more suited to assess Sb toxicity. This is the first report that confirms the toxicity of soil Sb to earthworm E. fetida as well as the considering of aging process and speciation.


Assuntos
Antimônio/toxicidade , Oligoquetos/fisiologia , Poluentes do Solo/toxicidade , Animais , Ecotoxicologia/métodos , Dose Letal Mediana , Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...