Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(3): e0334223, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38299854

RESUMO

The mammalian mouth is colonized by complex microbial communities, adapted to specific niches, and in homeostasis with the host. Individual microbes interact metabolically and rely primarily on nutrients provided by the host, with which they have potentially co-evolved along the mammalian lineages. The oral environment is similar across mammals, but the diversity, specificity, and evolution of community structure in related or interacting mammals are little understood. Here, we compared the oral microbiomes of dogs with those of wild wolves and humans. In dogs, we found an increased microbial diversity relative to wolves, possibly related to the transition to omnivorous nutrition following domestication. This includes a larger diversity of Patescibacteria than previously reported in any other oral microbiota. The oral microbes are most distinct at bacterial species or strain levels, with few if any shared between humans and canids, while the close evolutionary relationship between wolves and dogs is reflected by numerous shared taxa. More taxa are shared at higher taxonomic levels including with humans, supporting their more ancestral common mammalian colonization followed by diversification. Phylogenies of selected oral bacterial lineages do not support stable human-dog microbial transfers but suggest diversification along mammalian lineages (apes and canids). Therefore, despite millennia of cohabitation and close interaction, the host and its native community controls and limits the assimilation of new microbes, even if closely related. Higher resolution metagenomic and microbial physiological studies, covering a larger mammalian diversity, should help understand how oral communities assemble, adapt, and interact with their hosts.IMPORTANCENumerous types of microbes colonize the mouth after birth and play important roles in maintaining oral health. When the microbiota-host homeostasis is perturbed, proliferation of some bacteria leads to diseases such as caries and periodontitis. Unlike the gut microbiome, the diversity of oral microbes across the mammalian evolutionary space is not understood. Our study compared the oral microbiomes of wild wolves, dogs, and apes (humans, chimpanzees, and bonobos), with the aim of identifying if microbes have been potentially exchanged between humans and dogs as a result of domestication and cohabitation. We found little if any evidence for such exchanges. The significance of our research is in finding that the oral microbiota and/or the host limit the acquisition of exogenous microbes, which is important in the context of natural exclusion of potential novel pathogens. We provide a framework for expanded higher-resolution studies across domestic and wild animals to understand resistance/resilience.


Assuntos
Microbioma Gastrointestinal , Hominidae , Microbiota , Lobos , Humanos , Animais , Cães , Mamíferos/microbiologia , Bactérias
2.
Environ Microbiol ; 25(11): 2481-2497, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37553090

RESUMO

Hydrothermal systems form at divergent and convergent boundaries of lithospheric plates and within plates due to weakened crust and mantle plumes, playing host to diverse microbial ecosystems. Little is known of how differences in tectonic setting influence the geochemical and microbial compositions of these hydrothermal ecosystems. Here, coordinated geochemical and microbial community analyses were conducted on 87 high-temperature (>65°C) water and sediment samples from hot springs in Yellowstone National Park, Wyoming, USA (n = 41; mantle plume setting), Iceland (n = 41, divergent boundary), and Japan (n = 5; convergent boundary). Region-specific variation in geochemistry and sediment-associated 16S rRNA gene amplicon sequence variant (ASV) composition was observed, with 16S rRNA gene assemblages being nearly completely distinguished by region and pH being the most explanatory parameter within regions. Several low abundance ASVs exhibited cosmopolitan distributions across regions, while most high-abundance ASVs were only identified in specific regions. The presence of some cosmopolitan ASVs across regions argues against dispersal limitation primarily shaping the distribution of taxa among regions. Rather, the results point to local tectonic and geologic characteristics shaping the geochemistry of continental hydrothermal systems that then select for distinct microbial assemblages. These results provide new insights into the co-evolution of hydrothermal systems and their microbial communities.


Assuntos
Fontes Termais , Microbiota , Fontes Termais/química , RNA Ribossômico 16S/genética , Água , Japão , Filogenia
3.
ISME Commun ; 2(1): 66, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37938724

RESUMO

There are known associations between opioids, obesity, and the gut microbiome, but the molecular connection/mediation of these relationships is not understood. To better clarify the interplay of physiological, genetic, and microbial factors, this study investigated the microbiome and host inflammatory responses to chronic opioid administration in genetically obese, diet-induced obese, and lean mice. Samples of feces, urine, colon tissue, and plasma were analyzed using targeted LC-MS/MS quantification of metabolites, immunoassays of inflammatory cytokine levels, genome-resolved metagenomics, and metaproteomics. Genetic obesity, diet-induced obesity, and morphine treatment in lean mice each showed increases in distinct inflammatory cytokines. Metagenomic assembly and binning uncovered over 400 novel gut bacterial genomes and species. Morphine administration impacted the microbiome's composition and function, with the strongest effect observed in lean mice. This microbiome effect was less pronounced than either diet or genetically driven obesity. Based on inferred microbial physiology from the metaproteome datasets, a high-fat diet transitioned constituent microbes away from harvesting diet-derived nutrients and towards nutrients present in the host mucosal layer. Considered together, these results identified novel host-dependent phenotypes, differentiated the effects of genetic obesity versus diet induced obesity on gut microbiome composition and function, and showed that chronic morphine administration altered the gut microbiome.

4.
New Phytol ; 232(2): 762-775, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34227117

RESUMO

Identifying the potential for natural soil microbial communities to predictably affect complex plant traits is an important frontier in climate change research. Plant phenology varies with environmental and genetic factors, but few studies have examined whether the soil microbiome interacts with plant population differentiation to affect phenology and ecosystem function. We compared soil microbial variation in a widespread tree species (Populus angustifolia) with different soil inoculum treatments in a common garden environment to test how the soil microbiome affects spring foliar phenology and subsequent biomass growth. We hypothesized and show that soil bacterial and fungal communities vary with tree conditioning from different populations and elevations, that this soil community variation influences patterns of foliar phenology and plant growth across populations and elevation gradients, and that transferring lower elevation plant genotypes to higher elevation soil communities delayed foliar phenology, thereby shortening the growing season and reducing annual biomass production. Our findings show the importance of plant-soil interactions that help shape the timing of tree foliar phenology and productivity. These geographic patterns in plant population × microbiome interactions also broaden our understanding of how soil communities impact plant phenotypic variation across key climate change gradients, with consequences for ecosystem functioning.


Assuntos
Microbiota , Populus , Mudança Climática , Ecossistema , Estações do Ano , Solo
5.
Commun Biol ; 4(1): 748, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135464

RESUMO

Soil microbiomes are rapidly becoming known as an important driver of plant phenotypic variation and may mediate plant responses to environmental factors. However, integrating spatial scales relevant to climate change with plant intraspecific genetic variation and soil microbial ecology is difficult, making studies of broad inference rare. Here we hypothesize and show: 1) the degree to which tree genotypes condition their soil microbiomes varies by population across the geographic distribution of a widespread riparian tree, Populus angustifolia; 2) geographic dissimilarity in soil microbiomes among populations is influenced by both abiotic and biotic environmental variation; and 3) soil microbiomes that vary in response to abiotic and biotic factors can change plant foliar phenology. We show soil microbiomes respond to intraspecific variation at the tree genotype and population level, and geographic variation in soil characteristics and climate. Using a fully reciprocal plant population by soil location feedback experiment, we identified a climate-based soil microbiome effect that advanced and delayed bud break phenology by approximately 10 days. These results demonstrate a landscape-level feedback between tree populations and associated soil microbial communities and suggest soil microbes may play important roles in mediating and buffering bud break phenology with climate warming, with whole ecosystem implications.


Assuntos
Mudança Climática , Ecossistema , Populus/microbiologia , Microbiologia do Solo , Solo/química , Variação Genética , Microbiota , Rizosfera , Árvores/microbiologia , Estados Unidos
7.
Front Microbiol ; 11: 1625, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760379

RESUMO

Geothermal hot springs are a natural setting to study microbial adaptation to a wide range of temperatures reaching up to boiling. Temperature gradients lead to distinct microbial communities that inhabit their optimum niches. We sampled three alkaline, high temperature (80-100°C) hot springs in Yellowstone and Iceland that had cooling outflows and whose microbial communities had not been studied previously. The microbial composition in sediments and mats was determined by DNA sequencing of rRNA gene amplicons. Over three dozen phyla of Archaea and Bacteria were identified, representing over 1700 distinct organisms. We observed a significant non-linear reduction in the number of microbial taxa as the temperature increased from warm (38°C) to boiling. At high taxonomic levels, the community structure was similar between the Yellowstone and Iceland hot springs. We identified potential endemism at the genus level, especially in thermophilic phototrophs, which may have been potentially driven by distinct environmental conditions and dispersal limitations.

8.
mSystems ; 5(3)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32606021

RESUMO

Drought stress negatively impacts microbial activity, but the magnitude of stress responses is likely dependent on a diversity of belowground interactions. Populus trichocarpa individuals and no-plant bulk soils were exposed to extended drought (∼0.03% gravimetric water content [GWC] after 12 days), rewet, and a 12-day "recovery" period to determine the effects of plant presence in mediating soil microbiome stability to water stress. Plant metabolomic analyses indicated that drought exposure increased host investment in C and N metabolic pathways (amino acids, fatty acids, phenolic glycosides) regardless of recovery. Several metabolites positively correlated with root-associated microbial alpha-diversity, but not those of soil communities. Soil bacterial community composition shifted with P. trichocarpa presence and with drought relative to irrigated controls, whereas soil fungal composition shifted only with plant presence. However, root fungal communities strongly shifted with drought, whereas root bacterial communities changed to a lesser degree. The proportion of bacterial water-stress opportunistic operational taxonomic units (OTUs) (enriched counts in drought) was high (∼11%) at the end of drying phases and maintained after rewet and recovery phases in bulk soils, but it declined over time in soils with plants present. For root fungi, opportunistic OTUs were high at the end of recovery in drought treatments (∼17% abundance), although relatively not responsive in soils, particularly planted soils (<0.5% abundance for sensitive or opportunistic). These data indicate that plants modulate soil and root-associated microbial drought responses via tight plant-microbe linkages during extreme drought scenarios, but trajectories after extreme drought vary with plant habitat and microbial functional groups.IMPORTANCE Climate change causes significant alterations in precipitation and temperature regimes that are predicted to become more extreme throughout the next century. Microorganisms are important members within ecosystems, and how they respond to these changing abiotic stressors has large implications for the functioning of ecosystems, the recycling of nutrients, and the health of the aboveground plant community. Drought stress negatively impacts microbial activity, but the magnitude of this stress response may be dependent on above- and belowground interactions. This study demonstrates that beneficial associations between plants and microbes can enhance tolerance to abiotic stress.

9.
Metab Eng ; 62: 95-105, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32540392

RESUMO

Gas fermentation by autotrophic bacteria, such as clostridia, offers a sustainable path to numerous bioproducts from a range of local, highly abundant, waste and low-cost feedstocks, such as industrial flue gases or syngas generated from biomass or municipal waste. Unfortunately, designing and engineering clostridia remains laborious and slow. The ability to prototype individual genetic part function, gene expression patterns, and biosynthetic pathway performance in vitro before implementing designs in cells could help address these bottlenecks by speeding up design. Unfortunately, a high-yielding cell-free gene expression (CFE) system from clostridia has yet to be developed. Here, we report the development and optimization of a high-yielding (236 ± 24 µg/mL) batch CFE platform from the industrially relevant anaerobe, Clostridium autoethanogenum. A key feature of the platform is that both circular and linear DNA templates can be applied directly to the CFE reaction to program protein synthesis. We demonstrate the ability to prototype gene expression, and quantitatively map aerobic cell-free metabolism in lysates from this system. We anticipate that the C. autoethanogenum CFE platform will not only expand the protein synthesis toolkit for synthetic biology, but also serve as a platform in expediting the screening and prototyping of gene regulatory elements in non-model, industrially relevant microbes.


Assuntos
Sistema Livre de Células , Engenharia Metabólica , Redes e Vias Metabólicas , Sistema Livre de Células/metabolismo , Clostridium , Biossíntese de Proteínas
10.
Nat Biotechnol ; 37(11): 1314-1321, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31570900

RESUMO

Most microorganisms from all taxonomic levels are uncultured. Single-cell genomes and metagenomes continue to increase the known diversity of Bacteria and Archaea; however, while 'omics can be used to infer physiological or ecological roles for species in a community, most of these hypothetical roles remain unvalidated. Here, we report an approach to capture specific microorganisms from complex communities into pure cultures using genome-informed antibody engineering. We apply our reverse genomics approach to isolate and sequence single cells and to cultivate three different species-level lineages of human oral Saccharibacteria (TM7). Using our pure cultures, we show that all three Saccharibacteria species are epibionts of diverse Actinobacteria. We also isolate and cultivate human oral SR1 bacteria, which are members of a lineage of previously uncultured bacteria. Reverse-genomics-enabled cultivation of microorganisms can be applied to any species from any environment and has the potential to unlock the isolation, cultivation and characterization of species from as-yet-uncultured branches of the microbial tree of life.


Assuntos
Actinobacteria/metabolismo , Anticorpos/metabolismo , Proteínas de Membrana/imunologia , Boca/microbiologia , Análise de Célula Única/métodos , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Genômica , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Modelos Moleculares , Filogenia , Conformação Proteica , Genética Reversa , Análise de Sequência de DNA
11.
PLoS One ; 14(6): e0211310, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31211785

RESUMO

Soil microbiome responses to short-term nitrogen (N) inputs remain uncertain when compared with previous research that has focused on long-term fertilization responses. Here, we examined soil bacterial/archaeal and fungal communities pre- and post-N fertilization in an 8 year-old switchgrass field, in which twenty-four plots received N fertilization at three levels (0, 100, and 200 kg N ha-1 as NH4NO3) for the first time since planting. Soils were collected at two depths, 0-5 and 5-15 cm, for DNA extraction and amplicon sequencing of 16S rRNA genes and ITS regions for assessment of microbial community composition. Baseline assessments prior to fertilization revealed no significant pre-existing divergence in either bacterial/archaeal or fungal communities across plots. The one-time N fertilizations increased switchgrass yields and tissue N content, and the added N was nearly completely removed from the soil of fertilized plots by the end of the growing season. Both bacterial/archaeal and fungal communities showed large spatial (by depth) and temporal variation (by season) within each plot, accounting for 17 and 12-22% of the variation as calculated from the Sq. root of PERMANOVA tests for bacterial/archaeal and fungal community composition, respectively. While N fertilization effects accounted for only ~4% of overall variation, some specific microbial groups, including the bacterial genus Pseudonocardia and the fungal genus Archaeorhizomyces, were notably repressed by fertilization at 200 kg N ha-1. Bacterial groups varied with both depth in the soil profile and time of sampling, while temporal variability shaped the fungal community more significantly than vertical heterogeneity in the soil. These results suggest that short-term effects of N fertilization are significant but subtle, and other sources of variation will need to be carefully accounted for study designs including multiple intra-annual sampling dates, rather than one-time "snapshot" analyses that are common in the literature. Continued analyses of these trends over time with fertilization and management are needed to understand how these effects may persist or change over time.


Assuntos
Fertilizantes , Microbiota/efeitos dos fármacos , Nitrogênio/farmacologia , Panicum/microbiologia , Microbiologia do Solo , Agricultura/métodos , Bactérias/isolamento & purificação , Fungos/isolamento & purificação , Microbiota/genética , RNA Ribossômico 16S/genética , Estações do Ano , Análise Espaço-Temporal
12.
Microbiome ; 7(1): 76, 2019 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-31103040

RESUMO

BACKGROUND: Plants have developed defense strategies for phytopathogen and herbivore protection via coordinated metabolic mechanisms. Low-molecular weight metabolites produced within plant tissues, such as salicylic acid, represent one such mechanism which likely mediates plant - microbe interactions above and below ground. Salicylic acid is a ubiquitous phytohormone at low levels in most plants, yet are concentrated defense compounds in Populus, likely acting as a selective filter for rhizosphere microbiomes. We propagated twelve Populus trichocarpa genotypes which varied an order of magnitude in salicylic acid (SA)-related secondary metabolites, in contrasting soils from two different origins. After four months of growth, plant properties (leaf growth, chlorophyll content, and net photosynthetic rate) and plant root metabolomics specifically targeting SA metabolites were measured via GC-MS. In addition, rhizosphere microbiome composition was measured via Illumina MiSeq sequencing of 16S and ITS2 rRNA-genes. RESULTS: Soil origin was the primary filter causing divergence in bacterial/archaeal and fungal communities with plant genotype secondarily influential. Both bacterial/archaeal and fungal evenness varied between soil origins and bacterial/archaeal diversity and evenness correlated with at least one SA metabolite (diversity: populin; evenness: total phenolics). The production of individual salicylic acid derivatives that varied by host genotype resulted in compositional differences for bacteria /archaea (tremuloidin) and fungi (salicylic acid) within one soil origin (Clatskanie) whereas soils from Corvallis did not illicit microbial compositional changes due to salicylic acid derivatives. Several dominant bacterial (e.g., Betaproteobacteria, Acidobacteria, Verrucomicrobia, Chloroflexi, Gemmatimonadete, Firmicutes) and one fungal phyla (Mortierellomycota) also correlated with specific SA secondary metabolites; bacterial phyla exhibited more negative interactions (declining abundance with increasing metabolite concentration) than positive interactions. CONCLUSIONS: These results indicate microbial communities diverge most among soil origin. However, within a soil origin, bacterial/archaeal communities are responsive to plant SA production within greenhouse-based rhizosphere microbiomes. Fungal microbiomes are impacted by root SA-metabolites, but overall to a lesser degree within this experimental context. These results suggest plant defense strategies, such as SA and its secondary metabolites, may partially drive patterns of both bacterial/archaeal and fungal taxa-specific colonization and assembly.


Assuntos
Microbiota , Populus/genética , Populus/microbiologia , Rizosfera , Microbiologia do Solo , Archaea/classificação , Bactérias/classificação , Fungos/classificação , Genótipo , Metabolômica , Raízes de Plantas/microbiologia , Populus/metabolismo , RNA Ribossômico 16S/genética , Ácido Salicílico/metabolismo , Metabolismo Secundário , Análise de Sequência de DNA
13.
Environ Microbiol Rep ; 11(4): 548-557, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30970176

RESUMO

Serendipitaceae represents a diverse fungal group in the Basidiomycota that includes endophytes and lineages that repeatedly evolved ericoid, orchid and ectomycorrhizal lifestyle. Plants rely upon both nitrogen and phosphorous, for essential growth processes, and are often provided by mycorrhizal fungi. In this study, we investigated the cellular proteome of Serendipita vermifera MAFF305830 and closely related Serendipita vermifera subsp. bescii NFPB0129 grown in vitro under (N) ammonium and (P) phosphate starvation conditions. Mycelial growth pattern was documented under these conditions to correlate growth-specific responses to nutrient starvation. We found that N-starvation accelerated hyphal radial growth, whereas P-starvation accelerated hyphal branching. Additionally, P-starvation triggers an integrated starvation response leading to remodelling of lipid metabolism. Higher abundance of an ammonium transporter known to serve as both an ammonium sensor and stimulator of hyphal growth was detected under N-starvation. Additionally, N-starvation led to strong up-regulation of nitrate, amino acid, peptide, and urea transporters, along with several proteins predicted to have peptidase activity. Taken together, our finding suggests S. bescii and S. vermifera have the metabolic capacity for nitrogen assimilation from organic forms of N compounds. We hypothesize that the nitrogen metabolite repression is a key regulator of such organic N assimilation.


Assuntos
Basidiomycota/metabolismo , Endófitos/metabolismo , Metabolismo dos Lipídeos , Nitrogênio/metabolismo , Fósforo/metabolismo , Compostos de Amônio/metabolismo , Proteínas de Bactérias/metabolismo , Basidiomycota/crescimento & desenvolvimento , Endófitos/crescimento & desenvolvimento , Ontologia Genética , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Nitrogênio/deficiência , Fosfatos/deficiência , Fosfatos/metabolismo , Fósforo/deficiência , Proteoma/metabolismo , Estresse Fisiológico
14.
Glob Chang Biol ; 25(4): 1514-1528, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30659721

RESUMO

We examined the hypothesis that climate-driven evolution of plant traits will influence associated soil microbiomes and ecosystem function across the landscape. Using a foundation tree species, Populus angustifolia, observational and common garden approaches, and a base population genetic collection that spans 17 river systems in the western United States, from AZ to MT, we show that (a) as mean annual temperature (MAT) increases, genetic and phenotypic variation for bud break phenology decline; (b) soil microbiomes, soil nitrogen (N), and soil carbon (C) vary in response to MAT and conditioning by trees; and (c) with losses of genetic variation due to warming, population-level regulation of community and ecosystem functions strengthen. These results demonstrate a relationship between the potential evolutionary response of populations and subsequent shifts in ecosystem function along a large temperature gradient.

15.
New Phytol ; 222(1): 115-121, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29978909

RESUMO

While recent reports demonstrate that the direct emission of methane from living tree trunks may be a significant terrestrial emission source, there has been debate whether tree emissions are due to transport from soils or produced in the wood environment itself. Reports of methanogens from wood of trees were prominent in the literature 40 years ago but have not been revisited with molecular ecology approaches. We examined communities associated with Populus deltoides using rRNA gene sequence analyses and how these vary with tree and wood properties. Our data indicate that wood environments are dominated by anaerobic microbiomes. Methanogens are prominent in heartwood (mean 34% relative abundance) compared to sapwood environments (13%), and dominant operational taxonomic units (OTUs) were classified as the Methanobacterium sp. Members of the Firmicutes phylum comprised 39% of total sequences and were in 42% greater abundance in sapwood over heartwood niches. Tree diameter was the strongest predictor of methanogen abundance, but wood moisture content and pH were also significant predictors of taxon abundance and overall community composition. Unlike microbiomes of the soil, rhizosphere and phyllosphere, wood associated communities are shaped by unique environmental conditions and may be prominent and overlooked sources of methane emissions in temperate forest systems.


Assuntos
Archaea/metabolismo , Ecossistema , Metano/metabolismo , Populus/microbiologia , Madeira/microbiologia , Bactérias/crescimento & desenvolvimento , Biodiversidade , Microbiota , Análise de Componente Principal
16.
Biotechnol Biofuels ; 11: 253, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30250505

RESUMO

BACKGROUND: Lignin is a crucial molecule for terrestrial plants, as it offers structural support and permits the transport of water over long distances. The hardness of lignin reduces plant digestibility by cattle and sheep; it also makes inedible plant materials recalcitrant toward the enzymatic fermentation of cellulose, which is a potentially valuable substrate for sustainable biofuels. Targeted attempts to change the amount or composition of lignin in relevant plant species have been hampered by the fact that the lignin biosynthetic pathway is difficult to understand, because it uses several enzymes for the same substrates, is regulated in an ill-characterized manner, may operate in different locations within cells, and contains metabolic channels, which the plant may use to funnel initial substrates into specific monolignols. RESULTS: We propose a dynamic mathematical model that integrates various datasets and other information regarding the lignin pathway in Brachypodium distachyon and permits explanations for some counterintuitive observations. The model predicts the lignin composition and label distribution in a BdPTAL knockdown strain, with results that are quite similar to experimental data. CONCLUSION: Given the present scarcity of available data, the model resulting from our analysis is presumably not final. However, it offers proof of concept for how one may design integrative pathway models of this type, which are necessary tools for predicting the consequences of genomic or other alterations toward plants with lignin features that are more desirable than in their wild-type counterparts.

17.
Biotechnol Biofuels ; 11: 243, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30202438

RESUMO

BACKGROUND: Anaerobic fermentation of lignocellulose occurs in both natural and managed environments, and is an essential part of the carbon cycle as well as a promising route to sustainable production of fuels and chemicals. Lignocellulose solubilization by mixed microbiomes is important in these contexts. RESULTS: Here, we report the development of stable switchgrass-fermenting enrichment cultures maintained at various residence times and moderately high (55 °C) temperatures. Anaerobic microbiomes derived from a digester inoculum were incubated at 55 °C and fed semi-continuously with medium containing 30 g/L mid-season harvested switchgrass to achieve residence times (RT) of 20, 10, 5, and 3.3 days. Stable, time-invariant cellulolytic methanogenic cultures with minimal accumulation of organic acids were achieved for all RTs. Fractional carbohydrate solubilization was 0.711, 0.654, 0.581 and 0.538 at RT = 20, 10, 5 and 3.3 days, respectively, and glucan solubilization was proportional to xylan solubilization at all RTs. The rate of solubilization was described well by the equation r = k(C - C0fr), where C represents the concentration of unutilized carbohydrate, C0 is the concentration of carbohydrate (cellulose and hemicellulose) entering the bioreactor and fr is the extrapolated fraction of entering carbohydrate that is recalcitrant at infinite residence time. The 3.3 day RT is among the shortest RT reported for stable thermophilic, methanogenic digestion of a lignocellulosic feedstock. 16S rDNA phylotyping and metagenomic analyses were conducted to characterize the effect of RT on community dynamics and to infer functional roles in the switchgrass to biogas conversion to the various microbial taxa. Firmicutes were the dominant phylum, increasing in relative abundance from 54 to 96% as RT decreased. A Clostridium clariflavum strain with genetic markers for xylose metabolism was the most abundant lignocellulose-solubilizing bacterium. A Thermotogae (Defluviitoga tunisiensis) was the most abundant bacterium in switchgrass digesters at RT = 20 days but decreased in abundance at lower RTs as did multiple Chloroflexi. Synergistetes and Euryarchaeota were present at roughly constant levels over the range of RTs examined. CONCLUSIONS: A system was developed in which stable methanogenic steady-states were readily obtained with a particulate biomass feedstock, mid-season switchgrass, at laboratory (1 L) scale. Characterization of the extent and rate of carbohydrate solubilization in combination with 16S rDNA and metagenomic sequencing provides a multi-dimensional view of performance, species composition, glycoside hydrolases, and metabolic function with varying residence time. These results provide a point of reference and guidance for future studies and organism development efforts involving defined cultures.

18.
Biotechnol Biofuels ; 11: 34, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29449882

RESUMO

BACKGROUND: Lignin is a natural polymer that is interwoven with cellulose and hemicellulose within plant cell walls. Due to this molecular arrangement, lignin is a major contributor to the recalcitrance of plant materials with respect to the extraction of sugars and their fermentation into ethanol, butanol, and other potential bioenergy crops. The lignin biosynthetic pathway is similar, but not identical in different plant species. It is in each case comprised of a moderate number of enzymatic steps, but its responses to manipulations, such as gene knock-downs, are complicated by the fact that several of the key enzymes are involved in several reaction steps. This feature poses a challenge to bioenergy production, as it renders it difficult to select the most promising combinations of genetic manipulations for the optimization of lignin composition and amount. RESULTS: Here, we present several computational models than can aid in the analysis of data characterizing lignin biosynthesis. While minimizing technical details, we focus on the questions of what types of data are particularly useful for modeling and what genuine benefits the biofuel researcher may gain from the resulting models. We demonstrate our analysis with mathematical models for black cottonwood (Populus trichocarpa), alfalfa (Medicago truncatula), switchgrass (Panicum virgatum) and the grass Brachypodium distachyon. CONCLUSIONS: Despite commonality in pathway structure, different plant species show different regulatory features and distinct spatial and topological characteristics. The putative lignin biosynthes pathway is not able to explain the plant specific laboratory data, and the necessity of plant specific modeling should be heeded.

19.
mSystems ; 3(1)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29404422

RESUMO

Adverse growth conditions can lead to decreased plant growth, productivity, and survival, resulting in poor yields or failure of crops and biofeedstocks. In some cases, the microbial community associated with plants has been shown to alleviate plant stress and increase plant growth under suboptimal growing conditions. A systematic understanding of how the microbial community changes under these conditions is required to understand the contribution of the microbiome to water utilization, nutrient uptake, and ultimately yield. Using a microbiome inoculation strategy, we studied how the belowground microbiome of Populus deltoides changes in response to diverse environmental conditions, including water limitation, light limitation (shading), and metal toxicity. While plant responses to treatments in terms of growth, photosynthesis, gene expression and metabolite profiles were varied, we identified a core set of bacterial genera that change in abundance in response to host stress. The results of this study indicate substantial structure in the plant microbiome community and identify potential drivers of the phytobiome response to stress. IMPORTANCE The identification of a common "stress microbiome" indicates tightly controlled relationships between the plant host and bacterial associates and a conserved structure in bacterial communities associated with poplar trees under different growth conditions. The ability of the microbiome to buffer the plant from extreme environmental conditions coupled with the conserved stress microbiome observed in this study suggests an opportunity for future efforts aimed at predictably modulating the microbiome to optimize plant growth.

20.
Appl Environ Microbiol ; 82(18): 5698-708, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27422831

RESUMO

UNLABELLED: Bacterial endophytes that colonize Populus trees contribute to nutrient acquisition, prime immunity responses, and directly or indirectly increase both above- and below-ground biomasses. Endophytes are embedded within plant material, so physical separation and isolation are difficult tasks. Application of culture-independent methods, such as metagenome or bacterial transcriptome sequencing, has been limited due to the predominance of DNA from the plant biomass. Here, we describe a modified differential and density gradient centrifugation-based protocol for the separation of endophytic bacteria from Populus roots. This protocol achieved substantial reduction in contaminating plant DNA, allowed enrichment of endophytic bacteria away from the plant material, and enabled single-cell genomics analysis. Four single-cell genomes were selected for whole-genome amplification based on their rarity in the microbiome (potentially uncultured taxa) as well as their inferred abilities to form associations with plants. Bioinformatics analyses, including assembly, contamination removal, and completeness estimation, were performed to obtain single-amplified genomes (SAGs) of organisms from the phyla Armatimonadetes, Verrucomicrobia, and Planctomycetes, which were unrepresented in our previous cultivation efforts. Comparative genomic analysis revealed unique characteristics of each SAG that could facilitate future cultivation efforts for these bacteria. IMPORTANCE: Plant roots harbor a diverse collection of microbes that live within host tissues. To gain a comprehensive understanding of microbial adaptations to this endophytic lifestyle from strains that cannot be cultivated, it is necessary to separate bacterial cells from the predominance of plant tissue. This study provides a valuable approach for the separation and isolation of endophytic bacteria from plant root tissue. Isolated live bacteria provide material for microbiome sequencing, single-cell genomics, and analyses of genomes of uncultured bacteria to provide genomics information that will facilitate future cultivation attempts.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Endófitos/classificação , Endófitos/isolamento & purificação , Raízes de Plantas/microbiologia , Populus/microbiologia , Bactérias/genética , Centrifugação com Gradiente de Concentração/métodos , Biologia Computacional , Endófitos/genética , Metagenômica , Análise de Sequência de DNA , Análise de Célula Única/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...