Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747111

RESUMO

CoO/Fe3O4 nanosheets exhibit a superior rechargeable zinc-air battery (ZAB) performance of 276 mW cm-2 and stability over 600 h. The all-solid-state ZAB also affords a high power density of 107 mW cm-2.

2.
Angew Chem Int Ed Engl ; : e202407898, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739536

RESUMO

The quest for smart electronics with higher energy densities has intensified the development of high-voltage LiCoO2 (LCO). Despite their potential, LCO materials operating at 4.7 V faces critical challenges, including interface degradation and structural collapse. Herein, we propose a collective surface architecture through precise nanofilm coating and doping that combines an ultra-thin LiAlO2 coating layer and gradient doping of Al. This architecture not only mitigates side reactions, but also improves the Li+ migration kinetics on the LCO surface. Meanwhile, gradient doping of Al inhibited the severe lattice distortion caused by the irreversible phase transition of O3-H1-3-O1, thereby enhanced the electrochemical stability of LCO during 4.7 V cycling. DFT calculations further revealed that our approach significantly boosts the electronic conductivity. As a result, the modified LCO exhibited an outstanding reversible capacity of 230 mAh g-1 at 4.7 V, which is approximately 28% higher than the conventional capacity at 4.5 V. To demonstrate their practical application, our cathode structure shows improved stability in full pouch cell configuration under high operating voltage. LCO exhibited an excellent cycling stability, retaining 82.33% after 1000 cycles at 4.5 V. This multifunctional surface modification strategy offers a viable pathway for the practical application of LCO materials.

3.
J Colloid Interface Sci ; 662: 676-685, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368825

RESUMO

The zinc-air battery (ZAB) performance and stability strongly depend on the structure of bifunctional electrocatalyst for oxygen reduction/evolution reaction (ORR/OER). In this work, we combine the tip and heterogeneous effects to construct cobalt/cobalt oxide heterostructure nanoarrays (Co/CoO-NAs). Due to the formed heterostructure, more oxygen vacancies are found for Co/CoO-NAs resulting in a 1.4-fold higher ORR intrinsic activity than commercial carbon supported platinum electrocatalyst (Pt/C) at 0.8 V versus reversible hydrogen electrode (vs. RHE). Moreover, a fast surface reconstruction is observed for Co/CoO-NAs during OER catalysis evidenced by in-situ electrochemical impedance spectroscopy and Raman tests. In addition, the tip effect efficiently lowers the mass transfer resistance triggering a low overpotential of 347 mV at 200 mA cm-2 for Co/CoO-NAs. The strong electronic interplay between cobalt (Co) and cobalt oxide (CoO) contributes to a stable battery performance during 1200 h galvanostatic charge-discharge test at 5 mA cm-2. This work offers a new avenue to construct high-performance and stable oxygen electrocatalyst for rechargeable ZAB.

4.
J Acoust Soc Am ; 155(1): 315-327, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38236806

RESUMO

Direction-of-arrival (DoA) estimation is an important part in sonar signal processing, providing a reliable foundation for tasks, such as underwater object detection and tracking. Although the deep learning model has powerful data fitting capabilities, accurately estimating the orientation of multiple targets with a single model remains a challenging task. To address this challenge, we enhance the permutation invariant training (PIT) technique and propose two different types of methods: multi-group classification with PIT (MC-PIT) and multi-group regression with PIT (MR-PIT). These two frame-level PIT schemes utilize a single model for both training and testing in multi-target scenarios. Furthermore, we evaluate the performance of MR-PIT and MC-PIT with different network backbones and demonstrate that the frame-level PIT has excellent portability. Compared with the model trained with the general multi-label strategy, simulation experiments show that our proposed methods have better multi-target DoA estimation performance. Finally, when the array configuration of simulated and recorded data are consistent, the model with frame-level PIT can achieve good performance on recorded data even only trained on simulation data.

5.
Phys Chem Chem Phys ; 26(3): 2291-2303, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38165716

RESUMO

In the present work, a theoretical design for the viability of bilayer C4N3 (bi-C4N3) as a promising host material for Li-Se battery was conducted utilizing first-principles calculations. The AA- and AB-stacking configurations of bilayer C4N3 can effectively inhibit the shuttling of high-order polyselenides through the synergistic effect of physical confinement and strong Li-N bonds. Compared to conventional electrolytes, the AA- and AB-stacking bilayer C4N3 demonstrate enhanced adsorption capabilities for the polyselenides. The anchored structures of Se8 or Li2Sen (n = 1, 2, 4, 6, 8) molecules within the bilayer C4N3 exhibit high electrical conductivities, which are beneficial for enhancing the electrochemical performance. The catalytic effects of AA- and AB-stacking bilayer C4N3 were investigated by the reduction of Se8 and the energy barrier associated with the decomposition of Li2Se. The AA- and AB-stacking bilayer C4N3 can significantly decrease the activation barrier and promote the decomposition of Li2Se. The mean square displacement (MSD) curves reveal the pronounceably sluggish Li-ions diffusions in polyselenides within the AA- and AB-stacking bilayer C4N3, which in turn demonstrates the notable prospects in mitigating the shuttle effect.

6.
J Colloid Interface Sci ; 656: 450-456, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38006867

RESUMO

Direct methanol fuel cell (DMFC) is hampered by the sluggish methanol oxidation reaction. In this work, we have invited rhodium phosphides (Rh2P) to platinum (Pt) as robust MOR electrocatalyst ascribing the excellent water dissociation capability of Rh2P to generate Pt(OH)ads species to mitigate the CO poisoning. MOR mass activity of Rh2P-Pt/C is enhanced by 2- and 3.5-time with relative to commercial Pt/C and PtRu/C, respectively; additionally, the CO anti-poisoning ability is also boosted by 2.4 folds than Pt/C. The in-situ electrochemical impedance spectroscopy test reveals that the water dissociation is accelerated by Rh2P; moreover, the mutual electronic interplay between Pt and Rh2P contributes to a superior resistance towards electrochemical dissolution and coalescence. The theoretical investigation also indicates that d band center of Pt in Rh2P-Pt is downshifted resulting in a lower CO binding strength.

7.
Math Biosci Eng ; 20(9): 16045-16059, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37920002

RESUMO

In this study, due to multiple cases of dengue fever in two locations in Haikou, Hainan, several factors affecting the transmission of dengue fever in Haikou in 2019 were analyzed. It was found that dengue fever spread from two sites: a construction site, which was an epidemic site in Haikou, and the university, where only four confirmed cases were reported. Comparative analysis revealed that the important factors affecting the spread of dengue fever in Haikou were environmental hygiene status, knowledge popularization of dengue fever, educational background, medical insurance coverage and free treatment policy knowledge and active response by the government.


Assuntos
Dengue , Epidemias , Humanos , Dengue/epidemiologia , Meio Ambiente , Cidades/epidemiologia
8.
Adv Sci (Weinh) ; 10(32): e2305058, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37775308

RESUMO

Water splitting, an efficient technology to produce purified hydrogen, normally requires high cell voltage (>1.5 V), which restricts the application of single atoms electrocatalyst in water oxidation due to the inferior stability, especially in acidic environment. Substitution of anodic oxygen evolution reaction (OER) with hydrazine oxidation reaction (HzOR) effectually reduces the overall voltage. In this work, the utilization of iridium single atom (Ir-SA/NC) as robust hydrogen evolution reaction (HER) and HzOR electrocatalyst in 0.5 m H2 SO4 electrolyte is reported. Mass activity of Ir-SA/NC is as high as 37.02 A mgIr -1 at overpotential of 50 mV in HER catalysis, boosted by 127-time than Pt/C. Besides, Ir-SA/NC requires only 0.39 V versus RHE to attain 10 mA cm-2 in HzOR catalysis, dramatically lower than OER (1.5 V versus RHE); importantly, a superior stability is achieved in HzOR. Moreover, the mass activity at 0.5 V versus RHE is enhanced by 83-fold than Pt/C. The in situ Raman spectroscopy investigation suggests the HzOR pathway follows *N2 H4 →*2NH2 →*2NH→2N→*N2 →N2 for Ir-SA/NC. The hydrazine assisted water splitting demands only 0.39 V to drive, 1.25 V lower than acidic water splitting.

9.
Phys Chem Chem Phys ; 25(31): 21054-21064, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37525896

RESUMO

Suppressing the shuttle effect of high-order polyselenides is crucial for the development of high-performance host materials in lithium-selenium (Li-Se) batteries. Using first-principles calculations, the feasibility of Co@C3N3 monolayer as selenium cathode host material for Li-Se batteries is systematically evaluated from the aspects of binding energy, charge transfer mechanism, and catalytic effect of polyselenides in the present work. The Co@C3N3 monolayer can effectively prevent the solubilization of high-order polyselenides with large binding energy and charge transfer resulting from the synergistic effect of Li-N and Co-Se bonds. The polyselenides are inclined to adsorb on the surface of Co@C3N3 monolayer instead of interacting with the electrolytes, which effectively inhibits the shuttling of high-order polyselenides and improves cycling stability. The cobalt participation improves the conductivity of C3N3 monolayer, and the semi-metallic characteristics of the Co@C3N3 monolayer are maintained after the adsorption of Li2Sen (n = 1, 2, 4, 6, 8) or Se8 clusters, which is advantageous for the utilization of active selenium material. The crucial catalytic role of the Co@C3N3 monolayer is evaluated by examining the reduction pathway of Se8 and the decomposition barrier of Li2Se, and the results highlight the capability of Co@C3N3 monolayer to enhance the utilization of selenium and promote the transition of Li2Se. Our present work could not only provide valuable insights into the anchoring and catalytic effect of Co@C3N3 monolayer, but also shed light on the future investigation on the high performance C3N3-based host materials for Li-Se batteries.

10.
J Colloid Interface Sci ; 652(Pt A): 41-49, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37591082

RESUMO

In this work, we report a robust bifunctional electrocatalyst composed of 2D Ni- organic frameworks (Ni-MOF) and nitrogen doped carbon nanotubes encapsulated Ni nanoparticles (Ni-MOF@Ni-NCNT) for CN and HO bonds dissociation. Due to the presence of Ni-NCNT, adsorption of OH- species is enhanced and CO2 binding strength is simultaneously weakened leading to a boosted urea oxidation reaction performance reflected by decrement in potential at 100 mA cm-2 by 69 mV. The loosened binding strength with CO2 specie is highlighted by in-situ electrochemical impedance spectroscopy (EIS) test and DFT calculation. Moreover, the alkaline hydrogen evolution reaction (HER) performance of Ni-MOF@Ni-NCNT is better than Ni-MOF and Ni-NCNT evidenced by the overpotential at 50 mA cm-2 decreased by 224 mV and 900 mV ascribed to the synergistic effect, in which Ni-MOF, Ni nanoparticles and Ni-Nx-C facilitates water adsorption, dissociation and adsorption/combination of hydrogen ions, respectively. The assembled HER- urea oxidation reaction (UOR) system requires only 1.33 V to reach 10 mA cm-2, 70 mV lower than water splitting driven by Pt/C-IrO2.

11.
ACS Appl Mater Interfaces ; 15(25): 30179-30186, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37318509

RESUMO

Dopant-free defective carbon electrocatalysts have been considered as promising alternatives to traditional precious metal electrocatalysts recently. Compared with precious metal catalysts and transition-metal catalysts, since there are no metals doped, electrochemical devices assembled with dopant-free defective carbons are free from environmental pollution and subsequent recovery problems. In order to obtain abundant carbon defects with high-intrinsic catalytic activity, the synthesis of dopant-free defective carbons requires complex and harsh preparation conditions. Therefore, the construction of active defects with efficient utilization, especially through a simple process, is still a great challenge for the development of dopant-free defective carbon electrocatalysts. Herein, dissolution-recrystallization strategy was employed to design Zn-MOF-74 precursors for the synthesis of dopant-free defective carbons, realizing the synchronous manipulation of high ratio of carbon defects and highly exposed mass transfer channels. One-dimensional porous defective carbon nanorods (d-CNRs), which exhibited excellent oxygen reduction reaction (ORR), electrocatalytic activity, and molecular selectivity, were synthesized by directly carbonizing rodlike Zn-MOF-74 precursors. Attributed to the dissolution-recrystallization strategy, with the activation of in situ-formed ZnO, the synthesized d-CNRs exhibited unique pore-crack nested porous structures, which carried abundant defects as activity sites for ORR and showed a surprisingly high specific surface area of 2459 m2/g with a high ratio of mesopores. d-CNRs also showed promising applications in Zn-air batteries with a stable long-term discharge of no obvious voltage drop after 60 h. The dissolution-recrystallization strategy provided a simple controllable pathway for the efficient construction of dopant-free defective carbon electrocatalysts.

12.
Chem Commun (Camb) ; 59(54): 8404-8407, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37326427

RESUMO

Nickel-doped iridium echinus-like nanosheets (NiIr-ENS) have a superior acidic oxygen evolution reaction (OER) activity with a TOF of 1.72 s-1 at an overpotential of 300 mV, 8.6-fold higher than that of IrO2.

13.
Chem Rec ; 23(10): e202300129, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37229769

RESUMO

Proton exchange membrane water splitting (PEMWS) technology has high-level current density, high operating pressure, small electrolyzer-size, integrity, flexibility, and has good adaptability to the volatility of wind power and photovoltaics, but the development of both active and high stability of the anode electrocatalyst in acidic environment is still a huge challenge, which seriously hinders the promotion and application of PEMWS. In recent years, researchers have made tremendous attempts in the development of high-quality active anode electrocatalyst, and we summarize some of the research progress made by our group in the design and synthesis of PEMWS anode electrocatalysts with different nanostructures, and makes full use of electrocatalytic activity points to increase the inherent activity of Iridium (Ir) sites, and provides optimization strategies for the long-term non-decay of catalysts under high anode potential in acidic environments. At this stage, these research advances are expected to facilitate the research and technological progress of PEMWS, and providing some research ideas and references for future research on efficient and inexpensive PEMWS anode electrocatalysts.

14.
ACS Appl Mater Interfaces ; 15(16): 20081-20088, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-36989036

RESUMO

The realization of commercialization of proton electrolyte membrane water splitting technology significantly depends on the anodic electrocatalyst working at a high potential and strong acidic conditions requiring superior oxygen evolution reaction activity and stability. In this work, we devise the construction of ultrasmall Pd@Ir core-shell nanoparticles (5 nm) with atomic layer Ir (3 atomic layers) on carbon nanotubes (Pd@Ir/CNT) as an exceptional bifunctional electrocatalyst in acidic water splitting. Due to the core-shell structure, strain generated at heterointerfaces leads to an upshifted d band center of Ir atoms contributing to a 62-fold better mass activity at 1.63 V vs RHE than commercial IrO2; besides, the electronic hybridization suppresses the electrochemical dissolution of Ir; as a result, robust stability is also achieved. In hydrogen evolution reaction catalysis, Pd@Ir/CNT exhibits a 3.7 times higher mass activity than Pt/C. Furthermore, only 1.7 V is required to reach a water splitting current density of 100 mA cm-2, 251 mV lower than that of Pt/C-IrO2, indicating its superiority in acidic water splitting.

15.
Chem Commun (Camb) ; 58(100): 13923-13926, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36445280

RESUMO

In this study, we report an efficient bifunctional electrocatalyst of rhodium telluride (RhTe2) for alkaline water splitting. With the construction of Rh-Te bonds, the catalytic performance as well as stability are boosted.

16.
Chem Commun (Camb) ; 58(99): 13739-13742, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36416016

RESUMO

CoFe2O4 quantum dots (QDs) showed a battery performance 1.79 times higher than that displayed by the benchmark Pt/C-IrO2. Furthermore, a power density of 87 mW cm-2 was achieved for all-solid-state zinc air batteries (ZABs) of CoFe2O4 QDs, implying good prospects of using these QDs in practical applications.

17.
Chem Commun (Camb) ; 58(70): 9782-9785, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35969092

RESUMO

In this work, we report fluorine-doped tungsten sulfide as an exceptional electrocatalyst for H2O2 generation (95% at 0.6 V vs. RHE). The fluorine dopants boost the catalytic efficiency by reducing the binding strength between the catalytic center and OOH* species.

18.
J Org Chem ; 87(12): 7864-7874, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35676758

RESUMO

A highly efficient Rh-catalyzed hydrogenation of functionalized olefins has been realized by a new family of highly rigid chiral ferrocenylphosphine-spiro phosphonamidite ligands. Excellent enantiocontrol (>99% ee in most cases) was achieved with a wide range of α-dehydroamino acid esters and α-enamides. This practicable catalytic system was further applied in the scalable synthesis of highly optically pure key intermediates of cinacalcet and d-phenylalanine.


Assuntos
Alcenos , Ródio , Alcenos/química , Catálise , Hidrogenação , Ligantes , Ródio/química , Estereoisomerismo
19.
Chem Commun (Camb) ; 58(52): 7261-7264, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35670486

RESUMO

Metallic Fe nanoparticles partially occupy the sulfur vacancies at edge sites of WS2 leading to 4-fold higher NRR performance due to the boosted p-d hybridization between Fe and N atoms.

20.
Bull Environ Contam Toxicol ; 108(6): 1046-1055, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35244752

RESUMO

This study investigated the effects of silicon and iron on arsenic absorption, as well as the changes in the physiological indices of rice under arsenic stress and how these indices respond to silicon and iron. We found that application of silicon and iron reduces arsenic absorption in rice; co-application of silicon and iron reduced arsenic content by 25.6%-27.4%. The antioxidant enzyme activities of rice treated with silicon and iron were significantly lower than those of untreated rice, with the biggest decreases observed under co-application treatments. Iron significantly increased osmoregulatory substances, while silicon increased soluble sugar; Si1Fe1 treatment (containing 1 mM silicon, 0.1 mM iron) had the highest content of osmoregulatory substances except CK. Membership function analysis suggested that applying silicon and iron alone alleviates the stress condition in rice, with the lowest stresses observed under Si1Fe1 treatment. These results show that silicon and iron co-application significantly inhibits arsenic uptake in rice, decreases the antioxidant enzymes activity, while non-enzymatic substances in rice can be regulated to further alleviate arsenic stress.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Antioxidantes/farmacologia , Arsênio/análise , Arsênio/toxicidade , Ferro , Raízes de Plantas/química , Silício/farmacologia , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...