Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 184: 114245, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609224

RESUMO

The effects of ultrasound pretreatment (20 kHz, 30 W/L) on mulberries' texture, microstructure, characteristics of cell-wall polysaccharides, moisture migration, and drying quality were investigated over exposure times ranging from 15 to 45 min. Ultrasound induced softening of mulberry tissue, accompanied by an increase in water-soluble pectin and a decrease in chelate-soluble pectin and Na2CO3-soluble pectin concentrations. Noticeable depolymerization of the pectin nanostructure was observed in the pretreated mulberries, along with a decrease in molecular weight, attributed to side-chain structure cleavage. Ultrasound loosened the cell wall structure, increased free water content and freedom, thereby reducing water diffusion resistance. Ultrasound pretreatment reduced drying time by 11.2 % to 23.3 % at various processing times compared to controls. Due to significantly enhanced drying efficiency, the optimal pretreatment time (30 min) yielded dried mulberries with higher levels of total phenolics and total anthocyanins, along with an increased antioxidant capacity. The results of this study provide insights into the mechanisms by which ultrasound pretreatment can effectively enhance the mulberry drying process.


Assuntos
Morus , Nanoestruturas , Antocianinas , Polissacarídeos , Pectinas , Água
2.
Adv Mater ; 35(36): e2302706, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37278691

RESUMO

Liquid crystal elastomer (LCE) exhibits large and reversible deformability originating from the alignment of liquid crystal mesogens. Additive manufacturing provides high controllability in the alignment and shaping process of LCE actuators. However, it still remains a challenge to customize LCE actuators with both diverse 3D deformability and recyclability. In this study, a new strategy is developed to exploit knitting technique to additively manufacture LCE actuators. The obtained LCE actuators are fabric-structured with designed geometry and deformability. By accurately adjusting the parameters of the knitting patterns as modules, diverse geometry is pixel-wise designed, and complex 3D deformations including bending, twisting, and folding are quantitatively controlled. In addition, the fabric-structured LCE actuators can be threaded, stitched, and reknitted to achieve advanced geometry, integrated multi-functions and efficient recyclability. This approach allows the fabrication of versatile LCE actuators with potential applications in smart textiles and soft robots.

3.
Chem Asian J ; 18(15): e202300340, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37325932

RESUMO

Liquid crystal elastomers (LCEs) are considered to be a promising material for the fabrication of soft grippers because of their large and reversible deformations, an LCE gripper with suitable compressibility and omnidirectionality has not yet been developed. To overcome these obstacles, this study utilizes salt template method to fabricate a rod-like LCE foam as gripper. The thickness of the compressible foam can be reduced by up to 77%, temporarily maintaining the deformation and enabling the gripper to pass through slits. The foam was aligned along the long axis and the length of the foam exhibits reversible thermal responsiveness and contract up to 57% along its alignment. Additionally, when the foam approaches a heat source, the generated temperature gradient results in a contraction gradient owing to the low thermal conductivity of the LCE foam. This in turn causes the foam to reversibly bend with a bending angle up to 93° and follow the movement of a heat source omnidirectionally. The developed gripper successfully grasps, moves, and releases hot objects in a cold and safe place, demonstrating its potential for emergency disposal. Thus, LCE foams can be considered suitable materials for novel gripper design and construction.

4.
Mater Horiz ; 10(2): 576-584, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36468657

RESUMO

Soft pneumatic actuators (SPAs) rely on anisotropic mechanical properties to generate specific motions after inflation. To achieve mechanical anisotropy, additional stiff materials or heterogeneous structures are typically introduced in isotropic base materials. However, the inherent limitations of these strategies may lead to potential interfacial problems or inefficient material usage. Herein, we develop a new strategy for fabricating SPAs based on an aligned liquid crystal elastomer (LCE) by a modified 3D printing technology. A rotating substrate enables the one-step fabrication of tubular LCE-SPAs with designed alignments in three dimensions. The alignment can be precisely programmed through printing, resulting in intrinsic mechanical anisotropy of the LCE. With a specially designed alignment, LCE-SPAs can achieve basic motions-contraction, elongation, bending, and twisting-and accomplish diverse tasks, e.g., grabbing objects and mixing water. This study provides a new perspective for the design and fabrication of SPAs.

5.
Biosensors (Basel) ; 12(5)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624576

RESUMO

In this work, we have combined the advantages of sequence programmability of DNA nanotechnology and optical birefringence of liquid crystals (LCs). Herein, DNA amphiphiles were adsorbed onto LC droplets. A unique phenomenon of LC droplet aggregation was demonstrated, using DNA-modified LC droplets, through complementary DNA hybridization. Further functionalization of DNA-modified LC droplets with a desired DNA sequence was used to detect a wide range of chemicals and biomolecules, such as Hg2+, thrombin, and enzymes, through LC droplet aggregation and vice versa, which can be seen through the naked eye. These DNA-modified LC droplets can be printed onto a desired patterned surface with temperature-induced responsiveness and reversibility. Overall, our work is the first to report DNA-modified LC droplet, which provides a general detection platform based on the development of DNA aptamers. Additionally, this work inspires the exploration of surface information visualization combined with microcontact printing.


Assuntos
Cristais Líquidos , DNA/química , Cristais Líquidos/química , Hibridização de Ácido Nucleico
6.
Adv Mater ; 34(9): e2107840, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34933404

RESUMO

Untethered twist fibers do not require end-anchoring structures to hold their twist orientation and offer simple designs and convenient operation. The reversible responsiveness of these fibers allows them to generate torque and rotational deformation continuously upon the application of external stimuli. The fibers therefore have potential in rotating microengines. In practical applications, high torque and rotational deformation are desirable to meet work capacity requirements. However, the simultaneous endowment of reversible responsiveness and high rotational performance to untethered twist fibers remains a challenge. In this study, a liquid crystal elastomer twist fiber (LCETF) is designed and developed with a fixed twisting alignment of mesogens to provide untethered and reversible responsiveness. Outstanding rotational performance can be achieved when the mesogenic orientation is disrupted through heat triggering. Owing to the significant intrinsic contractile ratio of the LCE material, the rotational deformation of the LCETF can reach 243.6° mm-1 . More importantly, the specific torque can reach 10.1 N m kg-1 , which exceeds previously reported values. In addition, the LCETF can be exploited in a rotating microengine to convert heat into electricity with an induction voltage as high as 9.4 V. This work broadens the applications of LCEs for energy harvesters, micromachines, and soft robots.

7.
Langmuir ; 38(1): 282-288, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34955019

RESUMO

This work established a liquid crystal (LC) aptasensor for simple and rapid detection of ibuprofen, a typical pharmaceuticals and personal care products (PPCPs) pollutant. A negatively charged DNA aptamer specific for ibuprofen and a positively charged amphiphilic surfactant, hexadecyltrimethylammonium bromide (CTAB), were incubated with the sample and then directly added onto the LC interface. In the presence of ibuprofen, the specific binding of ibuprofen with the DNA aptamer will release CTAB, which then adsorbed at the LC-aqueous interface and induced the orientational change of LCs to homeotropic orientation with a dark optical signal output. While in the absence of ibuprofen, the DNA aptamer binds with CTAB through hydrophobic and electrostatic interactions, LCs remained in the planar orientation with a bright optical signal output. This LC aptasensor also has good specificity for ibuprofen and can even detect ibuprofen drug in tap water. Moreover, the response time of the LC aptasensor is fast in minutes. Additionally, this LC aptasensor benefits in monitoring the water quality and inspires the exploration of a general platform for PPCPs detection.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Cristais Líquidos , Preparações Farmacêuticas , Eletricidade Estática
8.
Chem Asian J ; 17(2): e202101251, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34877798

RESUMO

α-Synuclein is a central player in Parkinson's disease (PD) pathology. Various point mutations in α-synuclein have been identified to alter the protein-phospholipid binding behavior and cause PD. Therefore, exploration of α-synuclein-phospholipid interaction is important for understanding the PD pathogenesis and helping the early diagnosis of PD. Herein, a phospholipid-decorated liquid crystal (LC)-aqueous interface is constructed to investigate the binding between α-synucleins (wild-type and six familial mutant A30P, E46K, H50Q, G51D, A53E and A53T) and phospholipid. The application of deep learning analyzes and reveals distinct LC signatures generated by the binding of α-synuclein and phospholipid. This system allows for the identification of single point mutant α-synucleins with an average accuracy of 98.3±1.3% in a fast and efficient manner. We propose that this analytical methodology provides a new platform to understand α-synuclein-lipid interactions, and can be potentially developed for easy identification of α-synuclein mutations in common clinic.


Assuntos
Aprendizado Profundo , Cristais Líquidos , Doença de Parkinson , Humanos , Mutação , Doença de Parkinson/genética , alfa-Sinucleína/genética
9.
Small ; 17(44): e2103700, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34546008

RESUMO

Liquid crystal elastomer (LCE) fibers are capable of large and reversible deformations, making them an ideal artificial muscle. However, limited to stimulating source and structural design, current LCE fibers have not yet achieved both large contraction ratio and fast contraction rate to perform the intense motion. In this work, electrothermal-responsive liquid metal (LM) containing LCE (LM-LCE) fibers is reported. By introducing flexible liquid metal, LM-LCE fibers retain deformability with a large contraction ratio similar to that of pure LCE fibers and are endowed with electrical responsiveness. Applying precisely controlled electrical stimulation, the contraction ratio and rate of LM-LCE fibers can be programmed by adjusting voltage value and pulse time. Under electrical stimulation at 1.25 V cm-1 , 0.1 s, LM-LCE fibers can produce over 40% contraction ratio at an ultrafast contraction rate of up to 280% s-1 . Furthermore, LM-LCE fibers mimic human triceps muscle and can conduct precise ball shooting. LM-LCE fibers with excellent contraction ratio and rate extend their functionality as artificial muscles to perform intense movements and are expected to enrich the challenging applications of soft robots.


Assuntos
Cristais Líquidos , Robótica , Elastômeros , Eletricidade , Humanos , Músculos
10.
Sci Rep ; 11(1): 11663, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083615

RESUMO

The interaction of platelet GPIbα with von Willebrand factor (VWF) is essential to initiate platelet adhesion and thrombosis, particularly under high shear stress conditions. However, no drug targeting GPIbα has been developed for clinical practice. Here we characterized anfibatide, a GPIbα antagonist purified from snake (Deinagkistrodon acutus) venom, and evaluated its interaction with GPIbα by surface plasmon resonance and in silico modeling. We demonstrated that anfibatide interferds with both VWF and thrombin binding, inhibited ristocetin/botrocetin- and low-dose thrombin-induced human platelet aggregation, and decreased thrombus volume and stability in blood flowing over collagen. In a single-center, randomized, and open-label phase I clinical trial, anfibatide was administered intravenously to 94 healthy volunteers either as a single dose bolus, or a bolus followed by a constant rate infusion of anfibatide for 24 h. Anfibatide inhibited VWF-mediated platelet aggregation without significantly altering bleeding time or coagulation. The inhibitory effects disappeared within 8 h after drug withdrawal. No thrombocytopenia or anti-anfibatide antibodies were detected, and no serious adverse events or allergic reactions were observed during the studies. Therefore, anfibatide was well-tolerated among healthy subjects. Interestingly, anfibatide exhibited pharmacologic effects in vivo at concentrations thousand-fold lower than in vitro, a phenomenon which deserves further investigation.Trial registration: Clinicaltrials.gov NCT01588132.


Assuntos
Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Venenos de Crotalídeos/uso terapêutico , Fibrinolíticos/uso terapêutico , Lectinas Tipo C/uso terapêutico , Complexo Glicoproteico GPIb-IX de Plaquetas/antagonistas & inibidores , Venenos de Serpentes/uso terapêutico , Animais , Coagulação Sanguínea/efeitos dos fármacos , Venenos de Crotalídeos/química , Venenos de Crotalídeos/isolamento & purificação , Venenos de Crotalídeos/farmacocinética , Crotalinae , Fibrinolíticos/química , Fibrinolíticos/isolamento & purificação , Fibrinolíticos/farmacocinética , Voluntários Saudáveis , Humanos , Lectinas Tipo C/química , Lectinas Tipo C/isolamento & purificação , Modelos Moleculares , Adesividade Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Contagem de Plaquetas , Complexo Glicoproteico GPIb-IX de Plaquetas/química , Ligação Proteica , Conformação Proteica , Ristocetina/farmacologia , Venenos de Serpentes/química , Venenos de Serpentes/isolamento & purificação , Venenos de Serpentes/farmacocinética , Relação Estrutura-Atividade , Trombina/farmacologia , Trombose/prevenção & controle , Fator de von Willebrand/química , Fator de von Willebrand/metabolismo
11.
Soft Matter ; 17(18): 4842-4847, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33889925

RESUMO

Alpha-synuclein (αS) has been proposed as a potential biomarker for the diagnosis of Parkinson's disease (PD). However, the detection of αS using a simple, rapid and sensitive approach is still challenging. Herein, we construct a new type of biosensor for the detection of αS, combining the stimuli-responsiveness of liquid crystals (LCs) and the specific interaction of a DNA aptamer with proteins. In principle, the positively charged surfactant hexadecyltrimethylammonium bromide (CTAB) binds with the negatively charged DNA aptamer via electrostatic interactions; in the presence of αS, the DNA aptamer specifically binds with αS and releases CTAB, which is an amphiphilic molecule and subsequently assembles at the LC-aqueous interface, resulting in a homeotropic alignment of LCs with a dark optical signal. In the absence of αS, CTAB binds with the DNA aptamer without affecting the alignment of LCs, which shows planar anchoring with a bright optical signal. The response time of LCs towards αS is rapid and can be down to minutes. The LC biosensor established here has a good specificity for αS and can recognize αS even from a mixture of proteins. The LC biosensor also exhibits high sensitivity with a limit of detection of αS as low as 10 pM, which is comparable to that of the enzyme-linked immunosorbent assay. This work provides a new strategy for the detection of αS in a simple, rapid and sensitive manner, possessing promising potentials towards early diagnosis and clinical applications.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Cristais Líquidos , Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , alfa-Sinucleína
12.
J Colloid Interface Sci ; 584: 738-748, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33317712

RESUMO

HYPOTHESIS: The mechanism for the spontaneous formation of water droplets at oil/solid interfaces immersed in water is currently unclear. We hypothesize that growth and shrinkage of droplets are kinetically controlled by diffusion of water through the oil, driven by differences in chemical potential between the solid substrate and the aqueous reservoir. EXPERIMENTS: The formation, growth and shrinkage of water droplets at an immersed oil/solid interface are investigated theoretically and experimentally with three silicone oils. The surface is hydrophobic and the droplets formed are truncated spheres with radius, a, less than 10 µm. The expansion and contraction of the droplets can be controlled by adjusting the difference in chemical potential. The growth kinetics are modelled in terms of water migration through the oil layer which predicts a2∝t. FINDINGS: This is the first study of possible mechanisms for the formation of such interfacial droplets. Several possible causes are shown to be unfavourable, negligible, or are eliminated by careful experiments controlling key parameters (such as oil viscosity, substrate chemistry). The rate constant for mass transport is proportional to difference in chemical potential and an estimate shows dissociation of surface groups on the substrate provides a driving chemical potential of the right magnitude.

13.
Chem Commun (Camb) ; 56(40): 5441-5444, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32292959

RESUMO

A liquid crystal biosensor based on DNA aptamer for sensitive detection of Parkinson's Disease (PD) related alpha-synuclein was developed. This LC biosensor is constructed using a simple and label free method, and it not only enables early PD diagnosis, but also provides a general platform for detection based on DNA aptamer.


Assuntos
Técnicas Biossensoriais/métodos , Cristais Líquidos/química , alfa-Sinucleína/análise , Aptâmeros de Nucleotídeos/química , DNA/química , Humanos , Limite de Detecção , Doença de Parkinson/diagnóstico , Estudo de Prova de Conceito , alfa-Sinucleína/química
14.
Langmuir ; 36(19): 5400-5407, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32337992

RESUMO

The nucleation and growth of liquid droplets on solid substrates have received much attention because of the significant relevance of these multiphase processes to both nature and practical applications. There have been extensive studies on the condensation of water from the air phase on solid substrates. Here, we focus on water diffusion through the oil phase and subsequent settlement on solid substrates because such interfacial droplets are formed. Voronoi diagram analysis is proposed to statistically characterize the size distribution of the growing droplets. It is found that modification of the standard Voronoi diagram is required for systems of interfacial droplets which have a noncircular shape and/or whose centers change with time. The modified Voronoi analysis of the growing droplets provides an automatic quantification of the droplet distribution and reveals that (i) during the nucleation stage, the interfacial droplets do not nucleate at the same time because the nucleation of newly formed droplets competes with the growth of the existing ones; (ii) the growth of interfacial droplets comes from water diffusion from the bulk water layer, and/or from adjacent interfacial droplets, and/or from coalescence of interfacial droplets; and (iii) the sizes of interfacial droplets become more polydispersed on P-glass but more monodispersed on OTS-glass as time goes. This work opens a new perspective on the formation of interfacial droplets at the interface between oil and the solid substrate and demonstrates the capability of an automatic analysis method, which can be potentially applied to similar interfacial multiphase systems.

15.
Soft Matter ; 16(1): 107-113, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31651918

RESUMO

The controlling and patterning of small droplets on a solid surface is of significant interest to understand interfacial phenomena and for practical applications. Among interfacial phenomena, the formation of interfacial droplets attracts scientists' attention, as the mechanism of this phenomenon where water molecules can spontaneously accumulate at the hydrophobic oil/solid interface is still not fully understood. Further investigation is needed to find out specifically where the driving force comes from and how to spatially arrange the interfacial droplets. Herein, self-assembled monolayers are formed on a gold substrate, and it turns out that the hydrophobic surface with a monolayer formed from HS(CH2)11CH3 could inhibit the formation of interfacial droplets; by contrast, the hydrophilic surfaces with monolayers formed from HS(CH2)11COOH, HS(CH2)11NH3·Cl and HS(CH2)11OH, all promote water accumulation. It suggests that the hydrogen bonding between the surface and water proves to be critical in inducing interfacial droplet formation but this has been neglected in past studies. Taking advantage of microcontact printing, the surface chemistry can be controlled at the micron scale and allows spatial arrangement of interfacial droplets at specific regions. This work moves a further step in understanding the mechanism of interfacial droplet formation, and can be potentially exploited for the collection of water and fabrication of microtemplates.

16.
Langmuir ; 35(7): 2490-2497, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30696245

RESUMO

In this article, we designed an amphiphilic lipopeptide molecule, 5(6)-carboxyfluorescein-KKKKKKSKTK-Cys(C12H25)-OMe (FAM-lipopeptide-C12), and studied its assembly behavior at the 4-cyano-4'-pentylbiphenyl (5CB)-aqueous interface. The ordering transitions of liquid crystals (LCs) revealed that FAM-lipopeptide-C12 can assemble at the LC-aqueous interface (both planar and curved interfaces). The assembly can be destroyed by adding trypsin, which catalyzes the hydrolysis of lipopeptides. Fluorescence measurements further confirmed the assembly and deassembly behavior of FAM-lipopeptide-C12 at the LC-aqueous interface. Overall, our work provides a general method for the construction of a biointerface by directly assembling amphiphilic lipopeptides at the LC-aqueous interface, which can potentially be used in selectively detecting the activity of specific enzymes and other biomolecular interactions.


Assuntos
Fluoresceínas/química , Lipopeptídeos/química , Cristais Líquidos/química , Tensoativos/química , Compostos de Bifenilo/química , Fluoresceínas/síntese química , Hidrólise , Lipopeptídeos/síntese química , Nitrilas/química , Tensoativos/síntese química , Tripsina/química , Água/química
17.
ACS Appl Mater Interfaces ; 10(51): 44240-44246, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30484631

RESUMO

This study reports the first experimental evidence of DNA origami as a seed resulting in the increase in probability of protein crystallization. Using the DNA origami constructed from long single-stranded M13 DNA scaffolds folded with short single-stranded DNA staples, it was found that the addition of the DNA origami in concentrations of 2-6 nM to mixtures of a well-characterized protein (catalase) solution (1.0-7.0 mg/mL) resulted in a higher proportion of mixtures with successful crystallization, up to 11× greater. The improvement in crystallization is evident particularly for mixtures with low concentrations of catalase (<5 mg/mL). DNA origami in different conformations of a flat rectangular sheet and a tubular hollow cylinder were examined. Both conformations improved the crystallization as compared to control experiments without M13 DNA or nonfolded M13 DNA but exhibited little difference in the extent of protein crystallization improvement. This work confirms the predictions of the potential use of DNA origami to promote protein crystallization, with potential application to systems with limited protein availability or difficulty in crystallization.


Assuntos
Bacteriófago M13/química , Catalase/química , DNA Fúngico/química , DNA de Cadeia Simples/química , Nanoestruturas , Conformação de Ácido Nucleico , Cristalização
18.
Angew Chem Int Ed Engl ; 57(8): 2072-2076, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29266648

RESUMO

Building upon DNA origami technology, we introduce a method to reconstitute a single membrane protein into a self-assembled DNA nanobarrel that scaffolds a nanodisc-like lipid environment. Compared with the membrane-scaffolding-protein nanodisc technique, our approach gives rise to defined stoichiometry, controlled sizes, as well as enhanced stability and homogeneity in membrane protein reconstitution. We further demonstrate potential applications of the DNA nanobarrels in the structural analysis of membrane proteins.


Assuntos
DNA/química , Lipídeos/química , Proteínas de Membrana/química , Nanoestruturas/química , Microscopia Crioeletrônica , Glucosídeos/química , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo , Proteínas de Membrana/metabolismo , Microscopia Eletrônica de Transmissão
19.
Adv Healthc Mater ; 6(21)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28758712

RESUMO

In osteoporosis, bone structure can be improved by the introduction of therapeutic molecules inhibiting bone resorption by osteoclasts. Here, biocompatible hydrogels represent an excellent option for the delivery of pharmacologically active molecules to the bone tissue because of their biodegradability, injectability, and manifold functionalization capacity. The present study reports the preparation of a multifunctional hybrid hydrogel from chemically modified human serum albumin and rationally designed DNA building blocks. The hybrid hydrogel combines advantageous characteristics, including rapid gelation through DNA hybridization under physiological conditions and a self-healing and injectable nature with the possibility of specific loading and spatiotemporally controlled release of active proteins, making it an advanced biomaterial for the local treatment of bone diseases, for example, osteoporosis. The hydrogels are loaded with a recombinant Rho-inhibiting C3 toxin, C2IN-C3lim-G205C. This toxin selectively targets osteoclasts and inhibits Rho-signaling and, thereby, actin-dependent processes in these cells. Application of C2IN-C3lim-G205C toxin-loaded hydrogels effectively reduces osteoclast formation and resorption activity in vitro, as demonstrated by tartrate-resistant acid phosphatase staining and the pit resorption assay. Simultaneously, osteoblast activity, viability, and proliferation are unaffected, thus making C2IN-C3lim-G205C toxin-loaded hybrid hydrogels an attractive pharmacological system for spatial and selective modulation of osteoclast functions to reduce bone resorption.


Assuntos
ADP Ribose Transferases/química , Toxinas Botulínicas/química , DNA/química , Hidrogéis/química , Quinases Associadas a rho/metabolismo , ADP Ribose Transferases/genética , ADP Ribose Transferases/metabolismo , Animais , Toxinas Botulínicas/genética , Toxinas Botulínicas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Humanos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Mutagênese Sítio-Dirigida , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Polietilenoglicóis/química , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/farmacologia , Reologia , Albumina Sérica/química , Transdução de Sinais/efeitos dos fármacos
20.
J Colloid Interface Sci ; 506: 120-125, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28732228

RESUMO

This study demonstrates a new process for preparation of oil-in-water (O/W) emulsion using the high gravity technique. This involves a mixture of oil and water that are passed through a rotating packed bed, under a high shear force, from which oil is emulsified into tiny droplets and subsequently dispersed in water. The process is cycled in order to break the droplets repeatedly and achieve an emulsion with small size and low polydispersity index (PDI). The advantage of the high gravity technique is that the emulsions with a desired size and polydispersity can be rapidly obtained by tuning experimental parameters, such as relative centrifugal force (RCF), cycle times (CT), liquid flow rate (VL) and surfactant concentration (Csurfactant). The size of emulsions is shown to decrease with increasing RCF, CT, VL and Csurfactant. The PDI of emulsion prepared by high gravity technique is also much improved in comparison to that prepared by conventional sonication, which is further confirmed with dynamic light scattering and confocal imaging characterization. To provide an additional perspective on the high gravity technique as a tool to make O/W emulsions, uniformly distributed liquid crystal droplets were prepared by using the high gravity technique, which have been well studied for their in situ chemical and biological detection. In short, the high gravity technique for preparing emulsions is facile, fast and can be potentially applied for large scale industry applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...