Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 9(1): 406-414, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38183297

RESUMO

Magnetorheological elastomer thin films (MREFs) exhibit remarkable deformability and an adjustable modulus under magnetic fields, rendering them promising in fields such as robotics, flexible sensors, and biomedical engineering. Here, we fabricated MREF by introducing magnetostrictive particles (MSPs) and evaluated the magneto-mechanical coupling effect on the enhancement of sensitivity. The saturation magnetization (Ms) in a parallel anisotropic TbDyFe-PDMS MREF was 5.8 emu/g, and the initial tensile modulus was 55% greater than that of an Iso MREF. We propose a nonlinear magnetorheological formula on the magnetostriction effect, incorporating magnetic dipole interactions and the nonlinear prestress of magnetic particles. This formula highlights the complex nonlinear relationship between the external magnetic field (H) and the key parameters that affect the enhanced MR effect of MSPs-MREF, such as saturation magnetization, remanence (Mr), magnetostriction constant (λs) and stress deviator in ferromagnetic particles (Sed) in the magnetic chain structure. Furthermore, we validate the influence of the key parameters of the rectified magnetorheological formula on a nonlinear magneto-mechanical behavior of MSPs-MREF in PDMS-based MSPs-MREF models by using finite-element simulations. Finally, we developed a biosensor based on MSPs-MREF to detect human serum albumin at low concentrations in human urine samples. There is a 4-fold increase in sensitivity, a lower detection of limit (0.442 µg/mL), and a faster response time (15 min) than traditional biosensors, which in the future might provide an effective way of detecting biomolecules of low concentrations.


Assuntos
Elastômeros , Robótica , Humanos , Campos Magnéticos , Imãs
2.
Micromachines (Basel) ; 14(9)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37763930

RESUMO

The microspring is a typical type of device in MEMS devices, with a wide range of application scenarios and demands, among which a popular one is the microelectroformed nickel-based planar microspring prepared by the UV-LIGA technology based on the SU-8 adhesive. It is worth noting that the yield strength of the electrodeposited nickel microstructure is low, and the toughness of the structure is not high, which is unbeneficial for the enduring and stable operation of the spring. The paper mainly presents the methods of preparing high-aspect-ratio Ni/SiCw microstructures for MEMS devices based on UV-LIGA technology, developing Ni/SiCw-based microspring samples with a thickness of 300 µm, and applying a DMA tensile tester for mechanical property tests and characterization. In addition, the paper explores the influence of heat treatment at 300 °C and 600 °C on the tensile properties and microstructure of composite coatings. The results show that the W-form microspring prepared from Ni/SiCw composites not only has a wider linear range (about 1.2 times wider) than that of pure nickel material but also has a stronger resistance capacity to plastic deformation, which is competent for MEMS device applications in environments below 300 °C. The research provides a frame of reference and guidance for improving the stable cyclic operating life of such flat springs.

3.
Micromachines (Basel) ; 14(8)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37630026

RESUMO

With the advancement of semiconductor technology, chip cooling has become a major obstacle to enhancing the capabilities of power electronic systems. Traditional electronic packaging materials are no longer able to meet the heat dissipation requirements of high-performance chips. High thermal conductivity (TC), low coefficient of thermal expansion (CTE), good mechanical properties, and a rich foundation in microfabrication techniques are the fundamental requirements for the next generation of electronic packaging materials. Currently, metal matrix composites (MMCs) composed of high TC matrix metals and reinforcing phase materials have become the mainstream direction for the development and application of high-performance packaging materials. Silicon carbide (SiC) is the optimal choice for the reinforcing phase due to its high TC, low CTE, and high hardness. This paper reviews the research status of SiC-reinforced aluminum (Al) and copper (Cu) electronic packaging materials, along with the factors influencing their thermo-mechanical properties and improvement measures. Finally, the current research status and limitations of conventional manufacturing methods for SiC-reinforced MMCs are summarized, and an outlook on the future development trends of electronic packaging materials is provided.

4.
Micromachines (Basel) ; 14(7)2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37512711

RESUMO

Flexible wearable sensors have garnered significant interest in the fields of human-computer interaction, materials science, and biomedicine [...].

5.
Small ; 19(41): e2304004, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37300351

RESUMO

Multifunctional electronic skins (e-skins) that can sense various stimuli have demonstrated increasing potential in many fields. However, most e-skins are human-oriented that cannot work in hash environments such as high temperature, underwater, and corrosive chemicals, impairing their applications, especially in human-machine interfaces, intelligent machines, robotics, and so on. Inspired by the crack-shaped sensory organs of spiders, an environmentally robust and ultrasensitive multifunctional e-skin is developed. By developing a polyimide-based metal crack-localization strategy, the device has excellent environment adaptability since polyimide has high thermal stability and chemical durability. The localized cracked part serves as an ultrasensitive strain sensing unit, while the non-cracked serpentine part is solely responsible for temperature. Since the two units are made of the same material and process, the signals are decoupled easily. The proposed device is the first multifunctional e-skin that can be used in harsh environments, therefore is of great potential for both human and robot-oriented applications.


Assuntos
Robótica , Dispositivos Eletrônicos Vestíveis , Humanos , Pele , Atenção à Saúde , Sensação
6.
Small ; 19(33): e2208015, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37026672

RESUMO

Flexible pressure sensors play an increasingly important role in a wide range of applications such as human health monitoring, soft robotics, and human-machine interfaces. To achieve a high sensitivity, a conventional approach is introducing microstructures to engineer the internal geometry of the sensor. However, this microengineering strategy requires the sensor's thickness to be typically at hundreds to thousands of microns level, impairing the sensor's conformability on surfaces with microscale roughness like human skin. In this manuscript, a nanoengineering strategy is pioneered that paves a path to resolve the conflicts between sensitivity and conformability. A dual-sacrificial-layer method is initiated that facilitates ease of fabrication and precise assembly of two functional nanomembranes to manufacture the thinnest resistive pressure sensor with a total thickness of ≈850 nm that achieves perfectly conformable contact to human skin. For the first time, the superior deformability of the nanothin electrode layer on a carbon nanotube conductive layer is utilized by the authors to achieve a superior sensitivity (92.11 kPa-1 ) and an ultralow detection limit (<0.8 Pa). This work offers a new strategy that is able to overcome a key bottleneck for current pressure sensors, therefore is of potential to inspire the research community for a new wave of breakthroughs.

7.
Micromachines (Basel) ; 14(2)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36837957

RESUMO

This paper describes the design and characteristics of a three-chamber electromagnetic-driven peristaltic micropump based on 3D-printing technology. The micropump is composed of an NdFeB permanent magnet, a polydimethylsiloxane (PDMS) film, a 3D-printing pump body, bolts, electromagnets and a cantilever valve. Through simulation analysis and experiments using a single chamber and three chambers, valved and valveless, as well as different starting modes, the results were optimized. Finally, it is concluded that the performance of the three-chamber valved model is optimal under synchronous starting conditions. The measurement results show that the maximum output flow and back pressure of the 5 V, 0.3 A drive source are 2407.2 µL/min and 1127 Pa, respectively. The maximum specific flow and back pressure of the micropump system are 534.9 µL/min∙W and 250.4 Pa/W, respectively.

8.
Micromachines (Basel) ; 13(11)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36363894

RESUMO

A novel flexible thermocouple film sensor on a polyimide substrate is proposed that is simple and flexible for monitoring the respiratory signal. Several thermocouples were connected in series and patterned on the polyimide substrate, and each one is formed by copper and a constant line connected to each other at two nodes. The respiratory signal was measured by the output voltage, which resulted from the temperature difference between the hot and cold junctions. The sensors were fabricated with surface-microfabrication technology with three sputtering steps. The measurement results showed that the peak voltage decreased by 90% in the case of apnea compared with normal breathing. The sensor has potential application for wearable detection of sleep apnea hypopnea syndrome (OSAHS).

9.
ACS Appl Mater Interfaces ; 14(21): 24832-24839, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35593366

RESUMO

Monitoring the crew of a ship can be performed by combining sensors and artificial intelligence methods to process sensing data. In this study, we developed a deep learning (DL)-assisted minimalist structure triboelectric smart mat system for obtaining abundant crew information without the privacy concerns of taking video. The smart mat system is fabricated using a conductive sponge with different filling rates and a fluorinated ethylene propylene membrane. The proposed dual-channel measurement method improves the stability of the generated signal. Comprehensive crew and cargo monitoring, including personnel and status identification, as well as positioning and counting functions are realized by the DL-assisted triboelectric smart mat system according to the analysis of instant sensory data. Real-time monitoring of crews through fixed and mobile devices improves the ability and efficiency of handling emergencies. The smart mat system provides privacy concerns and an effective way to build ship Internet of Things and ensure personnel safety.

10.
Adv Mater ; 33(51): e2105761, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34655116

RESUMO

The working principle of the triboelectric nanogenerator (TENG), contact electrification and electrostatic induction, has been used to harvest raindrop energy in recent years. However, the existing research is mainly concentrated on solid-liquid electrification, and adopts traditional electrostatic induction (TEI) for output. As a result, the efficiency of droplet electricity generators (DEGs) is severely constrained. Therefore, previous studies deem that the DEG output is limited by interfacial effects. This study reveals that this view is inappropriate and, in reality, the output strategy is the key bottleneck restricting the DEG performance. Here, a switch effect based on an electric-double-layer capacitor (EDLC) is introduced, and an equivalent circuit model is established to understand its working mechanism. Without pre-charging, a single droplet can generate high voltage over 100 V and the output is directly improved by two-orders of magnitude compared with TEI, which is precisely utilizing the interfacial effect. This work provides insightful perspective and lays solid foundation for DEG applications in large scale.

11.
Micromachines (Basel) ; 12(3)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803303

RESUMO

Cell trapping is a very useful technique in a variety of cell-based assays and cellular research fields. It requires a high-throughput, high-efficiency operation to isolate cells of interest and immobilize the captured cells at specific positions. In this study, a dentate spiral microfluidic structure is proposed for cell trapping. The structure consists of a main spiral channel connecting an inlet and an out and a large number of dentate traps on the side of the channel. The density of the traps is high. When a cell comes across an empty trap, the cell suddenly makes a turn and enters the trap. Once the trap captures enough cells, the trap becomes closed and the following cells pass by the trap. The microfluidic structure is optimized based on the investigation of the influence over the flow. In the demonstration, 4T1 mouse breast cancer cells injected into the chip can be efficiently captured and isolated in the different traps. The cell trapping operates at a very high flow rate (40 µL/s) and a high trapping efficiency (>90%) can be achieved. The proposed high-throughput cell-trapping technique can be adopted in the many applications, including rapid microfluidic cell-based assays and isolation of rare circulating tumor cells from a large volume of blood sample.

12.
IEEE Trans Biomed Eng ; 66(12): 3480-3485, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30932818

RESUMO

OBJECTIVE: A minimally invasive hollow in-plane microneedle with a cladding structure is designed to improve the mechanical strength. METHODS: The traditional weak stack structure has been changed into a cladding structure, and the effectiveness has been validated through finite element analysis. The prototypes of the microneedles were batch manufactured by the integrated micromachining process with no need to assemble. RESULTS: Compared to our previously reported microneedle with the weak stack structure, the cladding microneedle in this paper shows 263% improvement in bonding strength (6.4±0.30 N) and 36.5% improvement in buckling strength (2.8±0.07 N). In addition, the fabricated microneedle will not fail during insertion into the fresh and dehydrated pig skin with a satisfying safety factor (1.55). CONCLUSION: A novel structure of hollow microneedle was developed and fabricated by microfabrication technology. The improvement in mechanical strength is obvious. SIGNIFICANCE: The microneedle has great mechanical property and good potential for wider applications in human skin.


Assuntos
Microinjeções/instrumentação , Agulhas , Animais , Desenho de Equipamento , Teste de Materiais , Fenômenos Mecânicos , Pele/química , Suínos
13.
Micromachines (Basel) ; 10(3)2019 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-30909638

RESUMO

Silver nanowires (AgNW) have excellent electrical conductivity, transparency, and flexing endurance, and are broadly used in flexible electrodes and flexible sensors. This study mixed the silver nanowires and polyimide (PI) polymer using an in situ synthesis method, effectively reducing the problem of silver nanowires falling off the substrate. The selective wet etching method was firstly used to process the surface of AgNW-PI films, greatly enhancing the surface conductivity of AgNW-PI films. A flexible pressure sensor with high sensitivity was designed with two face-to-face AgNW-PI ultrathin layers. The experimental results show that our sensor presented a high sensitivity of about 1.3294 kPa-1 under a pressure of about 600 Pa, and when pressure continued to increase, the sensitivity decreased rapidly and reached saturation. Our flexible pressure sensor has the properties of low cost, high sensitivity, excellent repeatability, durability, and can detect various types of mechanical forces which could be utilized for flexible electronics.

14.
Micromachines (Basel) ; 9(2)2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30393337

RESUMO

The design and fabrication of a Micro-electromechanical Systems (MEMS)-based tilted microcoil on a polyimide capillary are reported in this paper, proposed for an electromagnetically-driven single-fiber endoscope scanner application. The parameters of the tilted microcoil were optimized by simulation. It is proved that the largest driving force could be achieved when the tilt-angle, the pitch and the coil turns of the designed microcoil were 60°, 80 µm and 20, respectively. The modal simulation of the designed fiber scanner was carried out. The prototypes of the tilted microcoils were fabricated on the surface of polyimide capillary with 1 mm-diameter using our developed cylindrical projection lithography system. The dimensions of the two tilted microcoils were as follows: one was tilt-angle 45°, line width 10 ± 0.2 µm, coil pitch 78.5 ± 0.5 µm, and the other was tilt-angle 60°, line width 10 ± 0.2 µm, coil pitch 81.5 ± 0.5 µm. Finally, a direct mask-less electroplating process was employed to fabricate the copper microcoil with 15 µm thickness on the gold (Au) seed-layer, and the corresponding line width was expanded to 40 µm.

15.
Micromachines (Basel) ; 9(9)2018 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-30424387

RESUMO

This paper reports the design, simulation and experimental study of a linear magnetic microactuator for portable electronic equipment and microsatellite high resolution remote sensing technology. The linear magnetic microactuator consists of a planar microcoil, a supporter and a microspring. Its bistable mechanism can be kept without current by external permanent magnetic force, and can be switched by the bidirectional electromagnetic force. The linearization and threshold of the bistable mechanism was optimized by topology structure design of the microspring. The linear microactuator was then fabricated based on non-silicon technology and the prototype was tested. The testing results indicated that the bistable mechanism was realized with a fast response of 0.96 ms, which verified the simulation and analysis.

16.
Opt Express ; 26(4): 4172-4182, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29475269

RESUMO

A straightforward technique for fabricating low-cost microlens arrays with controllable focal length is developed. By harnessing and manipulating the interfacial energy between the liquid-state acrylate resin and the solidified polydimethylsiloxane (PDMS), the surface of the acrylate resin in the PDMS microhole presents a spherical shape and the curvature can be flexibly controlled. With the change of the processing time for the surface modification of the PDMS microholes, the focal length of the concave microlenses varies from -296.3 µm to -67.4 µm. The numerical aperture of 0.45 is realized. The focal length and the aperture of the microlenses are also affected by the diameter of the microholes. The fabricated concave microlens array can be employed as a master to further duplicate convex microlens array. A good image quality can be achieved by using the convex microlens arrays.

17.
Sci Rep ; 7: 45512, 2017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28361893

RESUMO

This paper presents a novel MEMS-based inertial microswitch design with multi-directional compact constraint structures for improving the shock-resistibility. Its shock-resistibility in the reverse-sensitive direction to ultra-high g acceleration (~hunderds of thousands) is simulated and analyzed. The dynamic response process indicates that in the designed inertial microswitch the proof mass weight G, the whole system's stiffness k and the gap x2 between the proof mass and reverse constraint blocks have significant effect on the shock-resistibility. The MEMS inertial microswitch micro-fabricated by surface micromachining has been evaluated using the drop hammer test. The maximum allowable reverse acceleration, which does not cause the spurious trigger, is defined as the reverse acceleration threshold (athr). Test results show that athr increases with the decrease of the gap x2, and the proposed microswitch tends to have a better shock-resistibility under smaller gap. The measured responses of the microswitches with and without constraint structure indicates that the device without constraint structure is prone to spurious trigger, while the designed constraint structures can effectively improve the shock-resistibility. In this paper, the method for improving the shock-resistibility and reducing the spurious trigger has been discussed.

18.
Sensors (Basel) ; 17(3)2017 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-28272330

RESUMO

A novel micro-electro-mechanical systems (MEMS) inertial microswitch with a flexible contact-enhanced structure to extend the contact duration has been proposed in the present work. In order to investigate the stiffness k of the stationary electrodes, the stationary electrodes with different shapes, thickness h, width b, and length l were designed, analyzed, and simulated using ANSYS software. Both the analytical and the simulated results indicate that the stiffness k increases with thickness h and width b, while decreasing with an increase of length l, and it is related to the shape. The inertial micro-switches with different kinds of stationary electrodes were simulated using ANSYS software and fabricated using surface micromachining technology. The dynamic simulation indicates that the contact time will decrease with the increase of thickness h and width b, but increase with the length l, and it is related to the shape. As a result, the contact time decreases with the stiffness k of the stationary electrode. Furthermore, the simulated results reveal that the stiffness k changes more rapidly with h and l compared to b. However, overlarge dimension of the whole microswitch is contradicted with small footprint area expectation in the structure design. Therefore, it is unreasonable to extend the contact duration by increasing the length l excessively. Thus, the best and most convenient way to prolong the contact time is to reduce the thickness h of the stationary electrode while keeping the plane geometric structure of the inertial micro-switch unchanged. Finally, the fabricated micro-switches with different shapes of stationary electrodes have been evaluated by a standard dropping hammer system. The test maximum contact time under 288 g acceleration can reach 125 µs. It is shown that the test results are in accordance with the simulated results. The conclusions obtained in this work can provide guidance for the future design and fabrication of inertial microswitches.

19.
Lab Chip ; 14(24): 4604-8, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25314909

RESUMO

We present a novel lab-on-a-tube technology, which is a combination of three-dimensional (3D) cylindrical photolithography and nanoimprint processes, for fabricating microfunctional structures on a tiny tube substrate directly. As an example, electrochemical electrodes, which consisted of Pt work and Ag/AgCl reference electrodes, were successfully fabricated on a 330-µm-diameter polyimide capillary. Using thermal nanoimprint technology, a microdome array with a diameter of 2 µm to about 600 nm was prepared in the work and reference electrodes. The nanoimprinted domes greatly enhanced the electrochemical activity and there were much higher oxidation and reduction current peaks observed in cyclic voltammetry curves of the nanoimprinted electrode than those of the blank electrode without the nanoimprint modification. The nanoimprinted patterns exhibited complicated effects, e.g. the 600-nm-diameter dome sample has higher electrochemical activity than the 2-µm-diameter dome, while the latter has a larger surface. By using the new lab-on-a-tube technology, new bio- and nanomaterials could be integrated directly into electronic devices on tiny tube substrates so that many interesting applications could be expected in medical and life technologies.


Assuntos
Sistemas Microeletromecânicos/instrumentação , Eletrodos , Sistemas Microeletromecânicos/métodos , Platina/química , Prata/química , Compostos de Prata/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...