Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
J Colloid Interface Sci ; 669: 466-476, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38723535

RESUMO

Heterostructure engineering is considered a crucial strategy to modulate the intrinsic charge transfer behavior of materials, enhance catalytic activity, and optimize sulfur electrochemical processes. However, parsing the role of heterogeneous interface-structure-property relationships in heterostructures is still a key scientific issue to realize the efficient catalytic conversion of polysulfides. Based on this, molybdenum carbide (Mo2C) was successfully partial reduced to molybdenum metal (Mo) via a thermal reduction at high-temperature and the typical Mo-Mo2C-based Mott-Schottky heterostructures were simultaneously constructed, which realized the modulation of the electronic structure of Mo2C and optimized the conversion process of lithium polysulfides (LPS). Compared with single molybdenum carbide, the modulated molybdenum carbide acts as an electron donor with stronger Mo-S bonding strength as well as higher polysulfide adsorption energy, faster Li2S conversion kinetics, and greatly facilitates the adsorption → catalysis process of LPS. As a result, yolk-shell Mo-Mo2C heterostructure (C@Mo-Mo2C) exhibits excellent cycling performance as a sulfur host, with a discharge specific capacity of 488.41 mAh g-1 for C@Mo-Mo2C/S at 4 C and present an excellent high-rate cyclic performance accompanied by capacity decay rate of 0.08 % per cycle after 400 cycles at 2 C. Heterostructure-acting Mo2C electron distribution modulation engineering may contributes to the understanding of the structure-interface-property interaction law in heterostructures and further enables the efficient modulation of the chemical behavior of sulfur.

2.
World J Surg ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733313

RESUMO

BACKGROUND: Thyroid cancer diagnoses have increased over recent decades at a rate much higher than that of any other cancer in Australia. Rural patients are known to have reduced access to healthcare and may have different thyroid cancer presentation rates. This study examined the relationship between thyroid cancer diagnosis and patient rurality. METHODS: Data from the Australia and New Zealand Thyroid Cancer Registry from 2017 to 2022 were analyzed, stratifying patient postcodes into rurality groups using the Australian Statistical Geography Standard. The American Thyroid Association (ATA) guidelines were used to stratify risk categories and management to compare treatment adequacy between the groups. Statistical analysis assessed demographic, clinical, and management differences. RESULTS: Among 1766 patients, 70.6% were metropolitan (metro) and 29.4% were non-metropolitan (non-metro). Non-metro patients were older at diagnosis (median 56 vs. 50 years, p < 0.001), presented more frequently with T stage greater than 1 (stage 2-4, 41.9% vs. 34.8%, and p = 0.005), AJCC stage greater than 1 (stage 2-4, 18.5% vs. 14.6%, and p = 0.019), and cancers larger than 4 cm (14.3% vs. 9.9%, p = 0.005). No significant differences in treatment adequacy were observed between the groups for ATA low-risk cancers. CONCLUSIONS: Non-metropolitan patients in the registry present with more advanced thyroid cancer, possibly due to differences in healthcare access. Further research should assess long-term survival outcomes and influencing factors. Understanding the impact on patient outcomes and addressing healthcare access barriers can optimize thyroid cancer care across geographic regions in Australia.

3.
Nature ; 628(8006): 78-83, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538799

RESUMO

Exotic physics could emerge from interplay between geometry and correlation. In fractional quantum Hall (FQH) states1, novel collective excitations called chiral graviton modes (CGMs) are proposed as quanta of fluctuations of an internal quantum metric under a quantum geometry description2-5. Such modes are condensed-matter analogues of gravitons that are hypothetical spin-2 bosons. They are characterized by polarized states with chirality6-8 of +2 or -2, and energy gaps coinciding with the fundamental neutral collective excitations (namely, magnetorotons9,10) in the long-wavelength limit. However, CGMs remain experimentally inaccessible. Here we observe chiral spin-2 long-wavelength magnetorotons using inelastic scattering of circularly polarized lights, providing strong evidence for CGMs in FQH liquids. At filling factor v = 1/3, a gapped mode identified as the long-wavelength magnetoroton emerges under a specific polarization scheme corresponding to angular momentum S = -2, which persists at extremely long wavelength. Remarkably, the mode chirality remains -2 at v = 2/5 but becomes the opposite at v = 2/3 and 3/5. The modes have characteristic energies and sharp peaks with marked temperature and filling-factor dependence, corroborating the assignment of long-wavelength magnetorotons. The observations capture the essentials of CGMs and support the FQH geometrical description, paving the way to unveil rich physics of quantum metric effects in topological correlated systems.

4.
Sci Rep ; 14(1): 6247, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38486063

RESUMO

Sleep is a modifiable behavior that can be targeted in interventions aimed at promoting healthy aging. This study aims to (i) identify the sleep duration trend in US adults; (ii) investigate the relationship between sleep duration and phenotypic age; and (iii) explore the role of exercise in this relationship. Phenotypic age as a novel index was calculated according to biomarkers collected from US adults based on the National Health and Nutrition Examination Survey (NHANES). Sleep information was self-reported by participants and discerned through individual interviews. The principal analytical method employed was weighted multivariable linear regression modeling, which accommodated for the complex multi-stage sampling design. The potential non-linear relationship was explored using a restricted cubic spline (RCS) model. Furthermore, subgroup analyses evaluated the potential effects of sociodemographic and lifestyle factors on the primary study outcomes. A total of 13,569 participants were finally included in, thereby resulting in a weighted population of 78,880,615. An examination of the temporal trends in sleep duration revealed a declining proportion of individuals with insufficient and markedly deficient sleep time since the 2015-2016 cycle. Taken normal sleep group as a reference, participants with extreme short sleep [ß (95% CI) 0.582 (0.018, 1.146), p = 0.044] and long sleep [ß (95% CI) 0.694 (0.186, 1.203), p = 0.010] were both positively associated with phenotypic age using the fully adjusted model. According to the dose-response relationship between sleep duration and phenotypic age, long sleep duration can benefit from regular exercise activity, whereas short sleep duration with more exercise tended to have higher phenotypic age. There is an inverted U-shaped relationship between short and long sleep durations and phenotypic age. This study represents an important step forward in our understanding of the complex relationship between sleep and healthy aging. By shedding light on this topic and providing practical exercise recommendations for promoting healthy sleep habits, researchers can help individuals live longer, healthier, and more fulfilling lives.


Assuntos
Duração do Sono , Transtornos do Sono-Vigília , Adulto , Humanos , Inquéritos Nutricionais , Estudos Transversais , Sono/fisiologia , Fatores de Risco
5.
Opt Express ; 32(4): 6507-6519, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439351

RESUMO

With the increasing demand for communication capacity, all-optical regeneration of multimode signals is a helpful technology of network nodes and optical signal processors. However, the difficulty of regenerating signal in higher-order modes hinders the practical application of multimode all-optical regenerators. In this study, we experimentally demonstrate the 40 Gb/s all-optical regeneration of NRZ-OOK signal in TE0 and TE1 modes via four-wave mixing (FWM) in the low-loss silicon-based nanowaveguide. By optimizing the parameters of waveguide section to enhance FWM conversion efficiency of two modes, and introducing Euler bending to reduce crosstalk between modes, the transmission loss of the silicon waveguide is 0.3 dB/cm, and the FWM conversion efficiency of the multimode regenerator is as high as -9.6 dB (TE0) and -13.0 dB (TE1). Both modes achieve extinction ratio enhancement of about 6 dB after regeneration. This silicon-based all-optical regenerator has great application potential in all-optical signal processing systems.

6.
Syst Rev ; 13(1): 64, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347564

RESUMO

BACKGROUND: Chronic ankle instability (CAI) is a common yet serious problem for elder patients. This meta-analysis aimed to evaluate the effects of balance training for CAI, to provide evidence for the clinical treatment, and care of CAI patients. METHODS: Two investigators searched PubMed, EMBASE, Science Direct, Web of Science, Cochrane Library, China National Knowledge Infrastructure, Wanfang, and Weipu Databases up to May 20, 2023, for randomized controlled trials (RCTs) on the effects of balance training for CAI. The mean difference (MD) with 95% confidence intervals (95%CIs) was calculated for each outcome with a fixed or random effect model. Review Manager 5.3 software was used for meta-analysis. RESULTS: Nine RCTs involving 341 patients were included. Meta-analysis results showed that compared with blank controls, balanced training treatment of CAI could significantly improve the score of CAI [MD = 3.95, 95% CI (3.26, 4.64), P < 0.00001], SEBT-PM [MD = 4.94, 95% CI (1.88, 8.00), P = 0.002], SEBT-PL [MD = 5.19, 95% CI (1.57, 8.81), P = 0.005], and FAAM Sports [MD = 17.74, 95% CI (14.36, 21.11), P < 0.00001]. Compared with strength training, balance training treatment of CAI improved the score of CAIT [MD = 2.36, 95% CI (0.29, 4.44), P = 0.03], FAAM-ADL [MD = 4.06, 95% CI (1.30, 6.83), P = 0.004]. CONCLUSION: The analysis outcomes indicate that balance training enhances daily activity capability, motor function, and dynamic balance to different extents. Additionally, when comparing the results of balance training and strength training, no significant difference was observed between the two methods in improving the dynamic stability of CAI patients. However, it is noteworthy that balance training exhibits a more pronounced impact on enhancing functional scale scores.


Assuntos
Instabilidade Articular , Esportes , Humanos , Idoso , Tornozelo , Articulação do Tornozelo , Equilíbrio Postural , Terapia por Exercício/métodos , Instabilidade Articular/terapia , Doença Crônica
7.
Front Neurosci ; 18: 1265630, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38298913

RESUMO

Color blindness is a retinal disease that mainly manifests as a color vision disorder, characterized by achromatopsia, red-green color blindness, and blue-yellow color blindness. With the development of technology and progress in theory, extensive research has been conducted on the genetic basis of color blindness, and various approaches have been explored for its treatment. This article aims to provide a comprehensive review of recent advances in understanding the pathological mechanism, clinical symptoms, and treatment options for color blindness. Additionally, we discuss the various treatment approaches that have been developed to address color blindness, including gene therapy, pharmacological interventions, and visual aids. Furthermore, we highlight the promising results from clinical trials of these treatments, as well as the ongoing challenges that must be addressed to achieve effective and long-lasting therapeutic outcomes. Overall, this review provides valuable insights into the current state of research on color blindness, with the intention of informing further investigation and development of effective treatments for this disease.

8.
ACS Infect Dis ; 10(2): 436-452, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38240689

RESUMO

Haemophilus influenzae is a commensal of the human upper respiratory tract that can infect diverse host niches due, at least in part, to its ability to withstand both endogenous and host-mediated oxidative stresses. Here, we show that hfeA, a gene previously linked to iron import, is essential for H. influenzae manganese recruitment via the HfeBCD transporter. Structural analyses show that metal binding in HfeA uses a unique mechanism that involves substantial rotation of the C-terminal lobe of the protein. Disruption of hfeA reduced H. influenzae manganese acquisition and was associated with decreased growth under aerobic conditions, impaired manganese-superoxide dismutase activity, reduced survival in macrophages, and changes in biofilm production in the presence of superoxide. Collectively, this work shows that HfeA contributes to H. influenzae manganese acquisition and virulence attributes. High conservation of the hfeABCD permease in Haemophilus species suggests that it may serve similar roles in other pathogenic Pasteurellaceae.


Assuntos
Haemophilus influenzae , Proteínas de Membrana Transportadoras , Humanos , Haemophilus influenzae/genética , Haemophilus influenzae/metabolismo , Proteínas de Membrana Transportadoras/genética , Manganês/metabolismo , Biofilmes , Homeostase
9.
J Environ Manage ; 353: 120181, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38271882

RESUMO

The substantial development of the dyeing and printing industry has resulted in an increased discharge of dye wastewater containing a large amount of recalcitrant organic pollutants. Furthermore, the landfill disposal of red mud has led to significant environmental pollution such as soil erosion and groundwater contamination. Therefore, this study aimed to promote the resource utilization of red mud by preparing advanced oxidation catalyst, resulting in effective treatment of dye wastewater, and the primary reaction mechanism was revealed. In this study, biochar-loading red mud (RBC) was applied to activate persulfate (PDS) for the degradation of acid orange 7 (AO7) with the initial concentration of 50 mg L-1. The maximum removal rate of 2.45 mg L·min-1 was achieved in 20 min and corresponding with the removal ratio of 98.0% under the PDS concentration of 20 mM (4.76 g L-1). Eventually, the removal ratio of 99.2% was attained within 60 min. The high catalytic efficiency was probably ascribed to the singlet oxygen (1O2) dominant non-radical pathway and RBC-mediated electron transfer mechanism. It was found that Fe(II), specific surface areas and functional groups on the catalyst were highly related to its catalytic efficiency and passivation. RBC had better reusability due to the loading of biochar and the reduction of zero-valent iron. The non-radical pathway mechanism and electron transfer mechanism were proposed for the activation of PDS, and non-radical pathway played a dominant role. Besides, the degradation pathways and toxicity assessment were analyzed. This research proposed a new electron transfer mechanism for activation process of PDS, which can provide a theoretical support for further studies. Overall, this study demonstrated that catalysts synthesized from red mud and biomass exhibit highly efficient activation in degrading the model pollutant AO7 through PDS activation. The catalyst displayed promising reusability and practical applicability, offering potential advancements in both the resource utilization and reduction of red mud.


Assuntos
Compostos Azo , Benzenossulfonatos , Poluentes Ambientais , Poluentes Químicos da Água , Águas Residuárias , Carvão Vegetal , Ferro , Poluentes Químicos da Água/análise
10.
Materials (Basel) ; 16(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38068212

RESUMO

We report a milestone in achieving large-scale, ultrathin (~5 nm) superconducting NbN thin films on 300 mm Si wafers using a high-volume manufacturing (HVM) industrial physical vapor deposition (PVD) system. The NbN thin films possess remarkable structural uniformity and consistently high superconducting quality across the entire 300 mm Si wafer, by incorporating an AlN buffer layer. High-resolution X-ray diffraction and transmission electron microscopy analyses unveiled enhanced crystallinity of (111)-oriented δ-phase NbN with the AlN buffer layer. Notably, NbN films deposited on AlN-buffered Si substrates exhibited a significantly elevated superconducting critical temperature (~2 K higher for the 10 nm NbN) and a higher upper critical magnetic field or Hc2 (34.06 T boost in Hc2 for the 50 nm NbN) in comparison with those without AlN. These findings present a promising pathway for the integration of quantum-grade superconducting NbN films with the existing 300 mm CMOS Si platform for quantum information applications.

11.
Biochem Genet ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38063952

RESUMO

Breast cancer is a common cancer worldwide. Hyperplastic enlarged lobular units (HELUs) are common changes in the breasts of adult women. HELUs may be closely related to the occurrence and development of breast cancer. In this study, genes that are commonly contained in the expression profiles of the genomes of the two diseases and have significant differences in expression before and after the respective diseases were identified. Various enrichment analyses were performed according to the expression levels of these differentially expressed genes. Furthermore, LASSO regression analysis was performed on the differentially expressed genes to identify genes significantly related to survival. The optimal risk model for the survival of patients with breast cancer was established, and the accuracy of the model was verified on multiple data sets. A gene combination containing 17 genes was ultimately determined to be an independent prognostic factor. Kaplan‒Meier survival analysis demonstrated the good performance of this risk model. The study found that Shared Gene Signatures and Biological Mechanisms in Hyperplastic Enlarged Lobular Units and Breast Cancer, screened 17 important Shared Gene Signatures of Hyperplastic Enlarged Lobular Units which are closely related to the survival of breast cancer patients through machine learning, and established a prognosis model with high-accuracy, which is worthy of further exploration.

12.
Front Neurosci ; 17: 1291682, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38099199

RESUMO

Faced with the increasingly severe global aging population with fewer children, the research, development, and application of elderly-care robots are expected to provide some technical means to solve the problems of elderly care, disability and semi-disability nursing, and rehabilitation. Elderly-care robots involve biomechanics, computer science, automatic control, ethics, and other fields of knowledge, which is one of the most challenging and most concerned research fields of robotics. Unlike other robots, elderly-care robots work for the frail elderly. There is information exchange and energy exchange between people and robots, and the safe human-robot interaction methods are the research core and key technology. The states of the art of elderly-care robots and their various nursing modes and safe interaction methods are introduced and discussed in this paper. To conclude, considering the disparity between current elderly care robots and their anticipated objectives, we offer a comprehensive overview of the critical technologies and research trends that impact and enhance the feasibility and acceptance of elderly care robots. These areas encompass the collaborative assistance of diverse assistive robots, the establishment of a novel smart home care model for elderly individuals using sensor networks, the optimization of robot design for improved flexibility, and the enhancement of robot acceptability.

13.
Molecules ; 28(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38138456

RESUMO

Apples are rich in vitamins and dietary fiber and are one of the essential fruits in people's daily diet. China has always been a big apple consumer, and with the improvement of people's life quality, nutrition, and health requirements, the demand for high-quality apples has increased year by year. Apple mold heart disease is one of the main diseases affecting apple quality. However, this disease cannot be easily detected from the surface, so it is difficult to detect mold heart disease. Therefore, this paper focuses on the analysis of seven non-destructive detection technologies, including near infrared spectroscopy technology, hyperspectral technology, Raman spectroscopy technology, electronic nose technology, acoustic technology, electrical technology, and magnetic technology, summarizes their application status in the detection of apple mold heart disease, and then analyzes their advantages and disadvantages. Combined with the current rapid development of artificial intelligence (AI) technology, this paper proposes the future development trends of using non-destructive technologies to detect apple mold heart disease. It is expected to provide basic theory and application references for the intelligent detection of apple mold heart disease.


Assuntos
Cardiopatias , Malus , Humanos , Inteligência Artificial , Fungos , Cardiopatias/diagnóstico , Tecnologia
14.
Microbiology (Reading) ; 169(11)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37909267

RESUMO

Genetic screens are a key tool for linking phenotype and genotype. Transposon mutagenesis was one of the first genetic methodologies to associate genetic loci with phenotypes. The advent of next-generation sequencing transformed the use of this technique allowing rapid interrogation of whole genomes for genes that correlate with phenotype. One method is transposon directed insertion-site sequencing (TraDIS). Here we describe the method, recent developments in technology, and the advantages and disadvantages of this method compared to other genetic screening tools.


Assuntos
Elementos de DNA Transponíveis , Sequenciamento de Nucleotídeos em Larga Escala , Elementos de DNA Transponíveis/genética , Mutagênese , Fenótipo , Genótipo , Sequência de Bases , Mutagênese Insercional , Sequenciamento de Nucleotídeos em Larga Escala/métodos
15.
J Environ Manage ; 347: 119077, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37776788

RESUMO

In this study, a novel acid-modified red mud biochar catalyst (MMBC) was synthesized by industrial waste red mud (RM) and peanut shell (PSL) to activate peroxodisulfate (PDS) for the degradation of TC. Meanwhile, MMBC exhibited remarkable adsorption capacity, reaching a 60% removal ratio of TC within 60 min (equilibrium adsorption capacity = 12 mg/g). After adding PDS, MMBC/PDS system achieved a 93.8% removal ratio of TC within 60 min. Quenching experiments and electron paramagnetic resonance (EPR) results showed that 1O2 played a dominant role in the degradation of TC and O2•- was the mainly precursor for the production of 1O2 in the MMBC/PDS system. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) analysis showed that the surface Fe(II), -OH and -COOH provided the active sites for the activation of PDS by MMBC. In addition, acid modification optimised the surface structure of the catalyst and enhanced the conversion of Fe (mainly Fe(III) to Fe(II)), thereby improving the adsorption and catalytic efficiency of MMBC. This study confirmed that modified red mud biochar is an efficient composite with both adsorption and catalysis, providing new ideas for the practical treatment of antibiotic wastewater and the resource utilization of red mud.


Assuntos
Compostos Férricos , Poluentes Químicos da Água , Compostos Férricos/química , Adsorção , Carvão Vegetal/química , Antibacterianos , Tetraciclina , Compostos Ferrosos , Poluentes Químicos da Água/química
16.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446049

RESUMO

Coronavirus disease 2019 (COVID-19) threatens public health all over the world. It is well-accepted that the immune cells in peripheral blood are widely involved in the pathological process of COVID-19. However, hematopoietic stem and progenitor cells (HSPCs), as the main source of peripheral immune cells, have not been well studied during COVID-19 infection. We comprehensively revealed the transcriptome changes of peripheral blood HSPCs after COVID-19 infection and vaccination by single-cell RNA-seq. Compared with healthy individuals, the proportion of HSPCs in COVID-19 patients significantly increased. The increase in the proportion of HSPCs might be partly attributed to the enhancement of the HSPCs proliferation upon COVID-19 infection. However, the stemness damage of HSPCs is reflected by the decrease of differentiation signal, which can be used as a potential specific indicator of the severity and duration of COVID-19 infection. Type I interferon (IFN-I) and translation signals in HSPCs were mostly activated and inhibited after COVID-19 infection, respectively. In addition, the response of COVID-19 vaccination to the body is mild, while the secondary vaccination strengthens the immune response of primary vaccination. In conclusion, our study provides new insights into understanding the immune mechanism of COVID-19 infection.


Assuntos
COVID-19 , Transcriptoma , Humanos , Vacinas contra COVID-19 , Análise da Expressão Gênica de Célula Única , Células-Tronco Hematopoéticas
17.
J Mater Chem B ; 11(33): 7950-7960, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37491975

RESUMO

Membrane fouling induces catastrophic loss of separation performance and seriously restricts the applications of reverse osmosis (RO) membranes. Inspired by the mussel structure, polydopamine (PDA) and cystamine molecules (CA) with excellent anti-fouling properties were used to prepare accessible, biocompatible, and redox-responsive coatings for RO membranes. The PDA/CA-coated RO membranes exhibit a superior water flux of 65 L m-2 h-1 with a favourable NaCl rejection exceeding 99%. The water permeability through the PDA/CA-coated membrane is much higher than that of most membranes with similar rejection rates. Due to the formed protective hydration layers by PDA/CA coatings, anti-fouling properties against proteins, polysaccharides and surfactants were evaluated separately, and ultralow fouling properties were demonstrated. Moreover, the disulfide linkages in CA molecules can cleave in a reducing environment, yielding the degradation of PDA/CA coatings, thereby removing the foulants deposited on the coatings. The degradation endows the coated membranes with satisfying longtime anti-fouling properties, where the flux recovery reaches up to 90%. The construction of redox-responsive smart coatings not only provided a promising route to alleviate membrane fouling but can also be upscaled for use in numerous practical applications like sensors, medical devices, and drug delivery.


Assuntos
Biomimética , Filtração , Osmose , Água/química , Oxirredução
18.
ACS Appl Mater Interfaces ; 15(29): 35631-35638, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37436846

RESUMO

The integration and miniaturization of contemporary electronics have led to significant challenges in dealing with electromagnetic (EM) radiation and heat accumulation. Despite these issues, achieving high thermal conductivity (TC) and electromagnetic interference (EMI) shielding effectiveness (SE) in polymer composite films remains an exceptionally difficult task. In this work, we used a straightforward in situ reduction process and a vacuum-drying method to successfully prepare a flexible Ag NPs/chitosan (CS)/PVA nanocomposite with three-dimensional (3D) conductive and thermally conductive network architectures. The 3D silver pathways formed by attaching to the chitosan fibers endow the material with simultaneous exceptional TC and EMI capabilities. At a silver concentration of 25 vol %, the TC of Ag NPs/CS/PVA nanocomposites reaches 5.18 W·m-1·K-1, exhibiting an approximately 25 times increase compared to CS/PVA composites. The electromagnetic shielding performance of 78.5 dB significantly outperforms the specifications of standard commercial EMI shielding applications by a significant margin. Additionally, Ag NPs/CS/PVA nanocomposites have greatly benefited from microwave absorption (SEA), effectively impeding the transmission of EM waves and reducing the reflected secondary EM wave pollution. Meanwhile, the composite material still maintains good mechanical properties and bendability. This endeavor helped develop malleable and durable composites that possess superior EMI shielding capabilities and intriguing heat dissipation properties using innovative design and fabrication methods.

19.
Front Cardiovasc Med ; 10: 1182334, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37363101

RESUMO

Background: This study aimed to explore the diagnostic value of contrast-enhanced echocardiography (CEE) in benign and malignant cardiac tumors and detect the correlation of CEE parameters and immunohistochemistry (IHC) markers. Methods: The data of 44 patients with cardiac tumors confirmed by pathology were reviewed. Lesions were examined before surgery using transthoracic echocardiography (TTE) and CEE with time-intensity curve analysis. The expression of CD31, VEGF and Ki67 was measured by IHC staining. Microvessel density (MVD) was quantified via IHC for CD31. The clinical variables, TTE, CEE and IHC parameters were compared between benign and malignant cardiac tumors. Receiver operating characteristic curve were used to analyze the value of factors in predicting malignant cardiac tumors. The correlation between CEE and IHC parameters was analyzed. Results: Among 44 cardiac tumors, 34 were benign and 10 were malignant. There were significant differences in the TTE parameters (pericardial effusion, tumor boundary, diameter, basal width), CEE parameters (tumor peak intensity (TPI), peak intensity ratio of tumor to myocardium (TPI/MPI), area under time-intensity curve (AUTIC)) and IHC parameters (Ki67, MVD, CD31, VEGF) between the benign and malignant tumor groups (all P < 0.05). Receiver operating characteristic curve analysis showed that the CEE and IHC parameters had diagnostic value in malignant cardiac tumors. There was a correlation between TPI/MPI and Ki67 (r = 0.62), AUTIC and Ki67 (r = 0.50), and AUTIC and CD31 (r = 0.56). Conclusion: TTE and CEE parameters were different between benign and malignant cardiac tumors. CEE is helpful to differentiate the properties of cardiac tumors. There is a correlation between CEE parameters and IHC markers. AUTIC and TPI/MPI can reflect the proliferation and invasion of tumors.

20.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(3): 871-879, 2023 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-37356954

RESUMO

OBJECTIVE: To explore the chronic injury and its possible mechanism of ionizing radiation on multipotent hematopoietic progenitor cells (MPPs) by determining the related indicators of MPPs in bone marrow of mice post-radiation. METHODS: Sixteen C57BL/6 adult mice were randomly divided into normal control and irradiation groups, 8 mice in each group. The mice in irradiation group were exposed to 6 Gy X-ray. The proportion of bone marrow MPPs, their apoptosis and proliferation 2 months after irradiation were detected by flow cytometry. Mitochondrial activity and levels of reactive oxygen species (ROS) in each MPPs population were detected by Mitotracker Red and DCFDA probes, and the senescent state of MPPs in the bone marrow was analyzed. RESULTS: Ionizing radiation could reduce the proportion of MPPs in mouse bone marrow. The proportions and numbers of MPP1, MPP3 and MPP4 in the bone marrow were significantly decreased after whole-body irradiation with 6 Gy X-ray (P<0.05). In addition, radiation significantly reduced the colony-forming capacity of MPPs in bone marrow (P<0.05), the proportions of apoptotic cells in the MPP1 and MPP4 cell populations increased significantly in the bone marrow (P<0.05). The activity of mitochondria was significantly reduced in the bone marrow MPP2, MPP3 and MPP4 cell populations compared with that of the control group (P<0.05). It was also found that the radiation could significantly increase the ROS levels of MPPs in bone marrow, and the content of ROS in the MPP2, MPP3 and MPP4 cell population of the bone marrow was significantly increased(P<0.05). The senescent cells ratios of MPP1, MPP3 and MPP4 cells in the bone marrow after irradiation were significantly higher than those in the control group (P<0.05). CONCLUSION: Ionizing radiation can cause chronic MPPs damage in mice, which is closely associated with persistent oxidative stress, cells apoptosis, and cellular senescence.


Assuntos
Medula Óssea , Células-Tronco Hematopoéticas , Camundongos , Animais , Espécies Reativas de Oxigênio , Camundongos Endogâmicos C57BL , Irradiação Corporal Total , Radiação Ionizante , Células da Medula Óssea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...