Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 62(32): 8661-8669, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38037983

RESUMO

For the development of photonic integrated circuits and lithium niobate (L i N b O 3, LN) optical waveguide technology, the implementation and application of polarization devices based on LN are also becoming more widespread, where titanium (Ti)-diffused LN waveguides form the basis of many important electro-optic (EO) integrated optical devices. Moreover, utilizing polarization conversion has the potential to enhance both the effectiveness and capacity of optical transmission. Thus, we have presented an EO polarization mode converter packaging with PANDA polarization-maintaining optical fibers (PMFs) in the broadband wavelength range (1440-1620 nm) to obtain the multiwavelength modulation, featuring the wavelength tunability. Additionally, the fabricated device is able to achieve transverse electric (TE) to transverse magnetic (TM) mode conversion efficiently with the applied voltage of  ±, which provides high conversion efficiency. Importantly, our device also features a high-frequency response of about 600 MHz with overall insertion loss below 5 dB. The rapid development of LN-based polarization devices holds great promise for chip-integrated systems in the field of polarization telecommunication.

2.
Opt Express ; 29(20): 32135-32148, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34615291

RESUMO

This paper presents an ultrasensitive temperature sensor and tunable mode converter based on an isopropanol-sealed modal interferometer in a two-mode fiber. The modal interferometer consists of a tapered two-mode fiber (TTMF) sandwiched between two single-mode fibers. The sensor provides high-sensitivity temperature sensing by taking advantages of TTMF, isopropanol and the Vernier-like effect. The TTMF provides a uniform modal interferometer with LP01 and LP11 modes as well as strong evanescent field on its surface. The temperature sensitivity of the sensor can be improved due to the high thermo-optic coefficient of isopropanol. The Vernier-like effect based on the overlap of two interference spectra is applied to magnify the sensing capabilities with a sensitivity magnification factor of 58.5. The temperature sensor is implemented by inserting the modal interferometer into an isopropanol-sealed capillary. The experimental and calculated results show the transmission spectrum exhibit blue shift with increasing ambient temperature. Experimental results show that the isopropanol-sealed modal interferometer provides a temperature sensitivity up to -140.5 nm/°C. The interference spectrum has multiple dips at which the input LP01 mode is converted to the LP11 mode. This modal interferometer acts as a tunable multi-channel mode converter. The mode converter that can be tuned by varying temperature and mode switch is realized.

3.
Opt Express ; 29(13): 19690-19702, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34266074

RESUMO

We propose the broadband mode-selective coupler (MSC) formed with a side-polished six mode fiber (6MF) and a tapered side-polished small core single-mode fiber (SC-SMF) or an SMF. The MSCs are designed to allow the LP01 mode in the SC-SMF and SMF to completely couple to the LP01, LP11, LP21, LP02, LP31, LP12 modes in the 6MF over a broadband wavelength range. The phase-matching conditions of the MSCs are satisfied by tapering the SC-SMF and SMF to specific diameters. The tapered fibers are side-polished to designed residual fiber thickness using the wheel polishing technique. The effective indices of the side-polished fibers are measured with the prism coupling method. The MSCs provide high coupling ratio and high mode purity. High coupling efficiencies in excess of 81% for all the higher-order modes are obtained in the wavelength range 1530-1600 nm. For the LP01, LP11, LP21, LP02, LP31, LP12 MSCs at 1550 nm, the coupling ratios are 96.2%, 99.8%, 89.5%, 85.0%, 90.9%, 96.1%, respectively, and the mode purity of the MSCs is higher than 88.0%. The loss of the MSCs is lower than 1.8 dB in the wavelength range 1530-1600 nm. This device can be applied in broadband mode-division multiplexing transmission systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...