Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.775
Filtrar
1.
Cancer Cell Int ; 24(1): 159, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714991

RESUMO

BACKGROUND: Single nuclear polymorphisms (SNPs) have been published to be correlated with multiple diseases. Transcription Factor 21 (TCF21) is a critical transcription factor involved in various types of cancers. However, the association of TCF21 genetic polymorphisms with gastric cancer (GC) susceptibility and prognosis remains unclear. METHODS: A case-control study comprising 890 patients diagnosed with GC and an equal number of cancer-free controls was conducted. After rigorous statistical analysis, molecular experiments were carried out to elucidate the functional significance of the SNPs in the context of GC. RESULTS: TCF21 rs2327430 (OR = 0.78, P = 0.026) provides protection against GC, while rs4896011 (OR = 1.39, P = 0.005) exhibit significant associations with GC risk. Furthermore, patients with the (TC + CC) genotype of rs2327430 demonstrate a relatively favorable prognosis (OR = 0.47, P = 0.012). Mechanistically, chromatin immunoprecipitation assay and luciferase reporter assay revealed that the C allele of rs2327430 disrupts the binding of Transcription Factor AP-2 Alpha (TFAP2A) to the promoter region of TCF21, resulting in increased expression of TCF21 and inhibition of malignant behaviors in GC cells. CONCLUSION: Our findings highlight the significant role of TCF21 SNPs in both the risk and prognosis of GC and provide valuable insights into the underlying molecular mechanisms. Specifically, the disruptive effect of rs2327430 on TCF21 expression and its ability to modulate malignant cell behaviors suggest that rs2327430 may serve as a potential predictive marker for GC risk and prognosis.

2.
Hortic Res ; 11(5): uhae057, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720932

RESUMO

Pumpkin CmoNAC1 enhances salt tolerance in grafted cucumbers. However, the potential interactions with other proteins that may co-regulate salt tolerance alongside CmoNAC1 have yet to be explored. In this study, we identified pumpkin CmoDREB2A as a pivotal transcription factor that interacts synergistically with CmoNAC1 in the co-regulation of salt tolerance. Both transcription factors were observed to bind to each other's promoters, forming a positive regulatory loop of their transcription. Knockout of CmoDREB2A in the root resulted in reduced salt tolerance in grafted cucumbers, whereas overexpression demonstrated the opposite effect. Multiple assays in our study provided evidence of the protein interaction between CmoDREB2A and CmoNAC1. Exploiting this interaction, CmoDREB2A facilitated the binding of CmoNAC1 to the promoters of CmoRBOHD1, CmoNCED6, CmoAKT1;2, and CmoHKT1;1, inducing H2O2 and ABA synthesis and increasing the K+/Na+ ratio in grafted cucumbers under salt stress. Additionally, CmoNAC1 also promoted the binding of CmoDREB2A to CmoHAK5;1/CmoHAK5;2 promoters, further contributing to the K+/Na+ homeostasis. In summary, these findings reveal a crucial mechanism of CmoNAC1 and CmoDREB2A forming a complex enhancing salt tolerance in grafted cucumbers.

3.
Chem Biol Drug Des ; 103(5): e14532, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38725089

RESUMO

Nonalcoholic steatohepatitis (NASH) is a progressive form of nonalcoholic fatty liver disease (NAFLD) that causes severe liver damage, fibrosis, and scarring. Despite its potential to progress to cirrhosis or hepatic failure, approved drugs or treatments are currently unavailable. We developed 4,4-diallyl curcumin bis(2,2-hydroxymethyl)propanoate, also known as 35e, which induces upregulation of mitochondrial proteins including carnitine palmitoyltransferase I (CPT-I), carnitine palmitoyltransferase II, heat shock protein 60, and translocase of the outer mitochondrial membrane 20. Among these proteins, the upregulated expression of CPT-I was most prominent. CPT-I plays a crucial role in transporting carnitine across the mitochondrial inner membrane, thereby initiating mitochondrial ß-oxidation of fatty acids. Given recent research showing that CPT-I activation could be a viable pathway for NASH treatment, we hypothesized that 35e could serve as a potential agent for treating NASH. The efficacy of 35e in treating NASH was evaluated in methionine- and choline-deficient (MCD) diet- and Western diet (WD)-induced models that mimic human NASH. In the MCD diet-induced model, both short-term (2 weeks) and long-term (7 weeks) treatment with 35e effectively regulated elevated serum alanine aminotransferase (ALT)/aspartate aminotransferase (AST) concentrations and histological inflammation. However, the antisteatotic effect of 35e was obtained only in the short-term treatment group. As a comparative compound in the MCD diet-induced model, curcumin treatment did not produce significant regulatory effects on the liver triglyceride/total cholesterol, serum ALT/AST, or hepatic steatosis. In the WD-induced model, 35e ameliorated hepatic steatosis and hepatic inflammation, while increasing serum AST and hepatic lipid content. A decrease in epididymal adipose tissue weight and serum free fatty acid concentration suggested that 35e may promote lipid metabolism or impede lipid accumulation. Overall, 35e displayed significant antilipid accumulation and antifibrotic effects in the two complementary mice models. The development of new curcumin derivatives with the ability to induce CPT-I upregulation could further underscore their efficacy as anti-NASH agents.


Assuntos
Curcumina , Modelos Animais de Doenças , Metionina , Hepatopatia Gordurosa não Alcoólica , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Metionina/metabolismo , Metionina/deficiência , Curcumina/farmacologia , Curcumina/química , Curcumina/uso terapêutico , Camundongos , Masculino , Dieta Ocidental/efeitos adversos , Camundongos Endogâmicos C57BL , Carnitina O-Palmitoiltransferase/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Propionatos/farmacologia , Propionatos/uso terapêutico , Propionatos/metabolismo , Humanos , Colina/metabolismo , Colina/farmacologia
4.
Foods ; 13(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38731742

RESUMO

Background: A diet high in purines can impair the function of the gut microbiota and disrupt purine metabolism, which is closely associated with the onset of hyperuricemia. Dietary regulation and intestinal health maintenance are key approaches for controlling uric acid (UA) levels. Investigating the impacts of fermented foods offers potential dietary interventions for managing hyperuricemia. Methods: In this study, we isolated a strain with potent UA-degrading capabilities from "Jiangshui", a fermented food product from Gansu, China. We performed strain identification and assessed its probiotic potential. Hyperuricemic quails, induced by a high-purine diet, were used to assess the UA degradation capability of strain JS-3 by measuring UA levels in serum and feces. Additionally, the UA degradation pathways were elucidated through analyses of the gut microbiome and fecal metabolomics. Results: JS-3, identified as Lacticaseibacillus paracasei, was capable of eliminating 16.11% of uric acid (UA) within 72 h, rapidly proliferating and producing acid within 12 h, and surviving in the gastrointestinal tract. Using hyperuricemic quail models, we assessed JS-3's UA degradation capacity. Two weeks after the administration of JS-3 (2 × 108 cfu/d per quail), serum uric acid (SUA) levels significantly decreased to normal levels, and renal damage in quails was markedly improved. Concurrently, feces from the JS-3 group demonstrated a significant degradation of UA, achieving up to 49% within 24 h. 16S rRNA sequencing revealed JS-3's role in gut microbiota restoration by augmenting the probiotic community (Bifidobacterium, Bacteroides unclassified_f-Lachnospiraceae, and norank_fynorank_o-Clostridia_UCG-014) and diminishing the pathogenic bacteria (Macrococus and Lactococcus). Corresponding with the rise in short-chain fatty acid (SCFA)-producing bacteria, JS-3 significantly increased SCFA levels (p < 0.05, 0.01). Additionally, JS-3 ameliorated metabolic disturbances in hyperuricemic quails, influencing 26 abnormal metabolites predominantly linked to purine, tryptophan, and bile acid metabolism, thereby enhancing UA degradation and renal protection. Conclusions: For the first time, we isolated and identified an active probiotic strain, JS-3, from the "Jiangshui" in Gansu, used for the treatment of hyperuricemia. It modulates host-microbiome interactions, impacts the metabolome, enhances intestinal UA degradation, reduces levels of SUA and fecal UA, alleviates renal damage, and effectively treats hyperuricemia without causing gastrointestinal damage. In summary, JS-3 can serve as a probiotic with potential therapeutic value for the treatment of hyperuricemia.

5.
J Med Chem ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38736187

RESUMO

Although vaccination remains the prevalent prophylactic means for controlling Influenza A virus (IAV) infections, novel structural antivirus small-molecule drugs with new mechanisms of action for treating IAV are highly desirable. Herein, we describe a modular biomimetic strategy to expeditiously achieve a new class of macrocycles featuring oxime, which might target the hemagglutinin (HA)-mediated IAV entry into the host cells. SAR analysis revealed that the size and linker of the macrocycles play an important role in improving potency. Particularly, as a 14-membered macrocyclic oxime, 37 exhibited potent inhibitory activity against IAV H1N1 with an EC50 value of 23 nM and low cytotoxicity, which alleviated cytopathic effects and protected cell survival obviously after H1N1 infection. Furthermore, 37 showed significant synergistic activity with neuraminidase inhibitor oseltamivir in vitro.

6.
Front Pediatr ; 12: 1338294, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737636

RESUMO

Objective: To understand the characteristics of the intestinal microbiota after oral tolerance in infants with food protein-induced proctocolitis (FPIAP) treated with amino acid formula and their differences from healthy children, aiming to provide a scientific basis for guiding the application of probiotics during treatment. Methods: FPIAP infants were prospectively enrolled, fecal specimens were obtained, and DNA was extracted for PCR amplification of the bacterial 16S rRNA gene V4 region. Library construction and sequencing were performed, and bioinformatic analysis was performed after obtaining valid data. Results: There were 36 patients in the FPIAP group: 20 males and 16 females, age 21.944 ± 13.277 months. Diarrhea with blood in the stool were the main symptom, with an average course of 14.83 ± 9.33 days. Thirty infants (83.33%) had mucus stool, 11.11% (4/36) of them experiencing vomiting, and 55.56% (20/36) of the infants displaying poor intake and weight gain, 28 (77.78%) patients with moderate eczema, 2 (5.6%) patients with chronic respiratory symptoms. The treatment time with amino acid formula was 5.51 ± 2.88 months. A control group comprising of 25 healthy infants who were full-term, natural delivery, bottle fed, and matched in terms of age (24.840 ± 12.680 months) and gender (15 males and 10 females) was selected. Anaerobic bacteria were less abundant in FPIAP infants than healthy infants (P = 4.811 × 10-5), but potentially pathogenic bacteria were more abundant (P = 0.000). The abundance of Actinobacteria was low in FPIAP infants, the abundance of Proteobacteria was high, and the abundance of Firmicutes was reduced. Bifidobacterium could be used as a bacterial genus to differentiate healthy and FPIAP infants. Both α-and ß-diversity indicators of intestinal microbiota were lower in FPIAP infants. In FPIAP infants, glucose and energy metabolism and amino acid anabolism were decreased, and inflammation-related lipopolysaccharide synthesis pathways were increased. Conclusion: Compared with healthy infants, FPIAP infants with oral tolerance after amino acid formula treatment had differences in the structure and diversity of intestinal microbiota, among which Bifidobacterium was significantly reduced. Trial Registration: This trial was registered on https://register.clinicaltrials.gov/.

7.
Int J Biol Macromol ; 269(Pt 2): 132196, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38723818

RESUMO

Enzymatic synthesis of biochemicals in vitro is vital in synthetic biology for its efficiency, minimal by-products, and easy product separation. However, challenges like enzyme preparation, stability, and reusability persist. Here, we introduced a protein scaffold and biosilicification coupled system, providing a singular process for the purification and immobilization of multiple enzymes. Using d-mannitol as a model, we initially constructed a self-assembling EE/KK protein scaffold for the co-immobilization of glucose dehydrogenase and mannitol dehydrogenase. Under an enzyme-to-scaffold ratio of 1:8, a d-mannitol yield of 0.692 mol/mol was achieved within 4 h, 2.16-fold higher than the free enzymes. The immobilized enzymes retained 70.9 % of the initial joint activity while the free ones diminished nearly to inactivity after 8 h. Furthermore, we incorporated the biosilicification peptide CotB into the EE/KK scaffold, inducing silica deposition, which enabled the one-step purification and immobilization process assisted by Spy/Snoop protein-peptide pairs. The coupled system demonstrated a comparable d-mannitol yield to that of EE/KK scaffold and 1.34-fold higher remaining activities after 36 h. Following 6 cycles of reaction, the immobilized system retained the capability to synthesize 56.4 % of the initial d-mannitol titer. The self-assembly co-immobilization platform offers an effective approach for enzymatic synthesis of d-mannitol and other biochemicals.

8.
Am J Cancer Res ; 14(4): 1675-1684, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726280

RESUMO

Mitoxantrone Hydrochloride Injection for Tracing (MHI), a modified new drug marketed in China, has been approved by the National Medical Products Administration for lymph node tracing in thyroid cancer and sentinel lymph node biopsy in breast cancer. This single-center, single-blind, dose-escalation phase I clinical trial aimed to investigate the safety of MHI on lymph node tracing in gastric cancer. In this study, four dose groups (1.0 mL, 1.5 mL, 2.0 mL, and 3.0 mL) with 3 gastric cancer patients in each group were set. The safety, tolerability, pharmacokinetics and preliminary efficacy of different doses were investigated. Results showed that none of the patients experienced dose-limiting toxicity or developed serious adverse events or adverse drug reactions. Pharmacokinetic analyses revealed minimal absorption of the tracer, resulting in low and transient blood drug concentrations across all participants. The mean time to peak concentration was (0.561 ± 0.3728) h (with mean peak concentration (Cmax) of 10.300 ng/mL), (0.500 ± 0.0167) h (mean Cmax of 13.687 ng/mL), (0.494 ± 0.0096) h (mean Cmax of 30.933 ng/mL), and (0.661 ± 0.2791) h (mean Cmax of 21.067 ng/mL) in the 1.0 mL, 1.5 mL, 2.0 mL, and 3.0 mL dose groups, respectively. The mean lymph node staining rates were 21.0%, 24.7%, 32.5%, and 44.5%, and the mean metastatic lymph node staining rates were 20.6%, 36.1%, 42.4%, and 21.0% in each group. This study confirmed that MHI was safe, well-tolerated, and had low systemic effects when used for lymphatic tracing of gastric cancer, and the tracing effect was better in the 3 mL dose group. This trail was registered on the website of Centre for Drug Evaluation State Drug and Food Administration (http://www.chinadrugtrials.org.cn/index.html) with the name of clinical study of lymphatic tracer in lymph node tracing of gastric cancer, the code was CTR20201906.

10.
PLoS Negl Trop Dis ; 18(5): e0012136, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38739637

RESUMO

BACKGROUND: Tuberculosis (TB) and COVID-19 co-infection poses a significant global health challenge with increased fatality rates and adverse outcomes. However, the existing evidence on the epidemiology and treatment of TB-COVID co-infection remains limited. METHODS: This updated systematic review aimed to investigate the prevalence, fatality rates, and treatment outcomes of TB-COVID co-infection. A comprehensive search across six electronic databases spanning November 1, 2019, to January 24, 2023, was conducted. The Joanna Briggs Institute Critical Appraisal Checklist assessed risk of bias of included studies, and meta-analysis estimated co-infection fatality rates and relative risk. RESULTS: From 5,095 studies screened, 17 were included. TB-COVID co-infection prevalence was reported in 38 countries or regions, spanning both high and low TB prevalence areas. Prevalence estimates were approximately 0.06% in West Cape Province, South Africa, and 0.02% in California, USA. Treatment approaches for TB-COVID co-infection displayed minimal evolution since 2021. Converging findings from diverse studies underscored increased hospitalization risks, extended recovery periods, and accelerated mortality compared to single COVID-19 cases. The pooled fatality rate among co-infected patients was 7.1% (95%CI: 4.0% ~ 10.8%), slightly lower than previous estimates. In-hospital co-infected patients faced a mean fatality rate of 11.4% (95%CI: 5.6% ~ 18.8%). The pooled relative risk of in-hospital fatality was 0.8 (95% CI, 0.18-3.68) for TB-COVID patients versus single COVID patients. CONCLUSION: TB-COVID co-infection is increasingly prevalent worldwide, with fatality rates gradually declining but remaining higher than COVID-19 alone. This underscores the urgency of continued research to understand and address the challenges posed by TB-COVID co-infection.


Assuntos
COVID-19 , Coinfecção , SARS-CoV-2 , Tuberculose , Humanos , COVID-19/mortalidade , COVID-19/epidemiologia , COVID-19/complicações , Coinfecção/epidemiologia , Coinfecção/mortalidade , Tuberculose/mortalidade , Tuberculose/epidemiologia , Tuberculose/complicações , Prevalência
11.
J Chromatogr A ; 1727: 464989, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38763085

RESUMO

Ultrahigh-performance liquid chromatography coupled with high-field quadrupole Orbitrap high resolution mass spectrometry was used for the separation and determination of 20 antihistamines, and a dispersive micro solid-phase extraction procedure using high-performance absorbing material was developed as a sample preparation strategy for extracting 20 antihistamines from milk. Instrument conditions and key parameters influencing extraction efficiency were investigated to obtain an optimized method. The limit of detection for 20 antihistamines in milk using this method is 0.05 µg/L to 1.0 µg/L. Recoveries are between 80.7 % and 108.3 %, and the relative standard deviation is less than 15 %. It is suitable for confirmatory monitoring and quantitative analysis of 20 antihistamines in milk. The results show that antihistamines in milk may be noteworthy issues for human health and environmental pollution.

12.
Nat Prod Res ; : 1-7, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767178

RESUMO

A new chromone, angeliticin B (1) together with nine known compounds, psoralene (2), isoimperatorin (3), (S)-(-)-2'-methoxypeucedanin hydrate (4), (S)-(-)-oxypeucedanin (5), xanthotoxin (6), isopimpinellin (7), 1'-O-ß-D-glucopyranosyl-(2'S, 3'R)-3'-hydroxymarmesin (8), sec-O-glucosylhamaudol (9) and vanillin (10) were isolated from the methanol extract of Angelica polymorpha Maxim. The structures of these compounds were elucidated through a comprehensive analysis of standard spectral data (MS, IR, and NMR). Compound 1 exhibited antioxidant activity with IC50 = 198.57 µM in DPPH experiment and 31.71 µM in ABTS experiment. Compound 2, 6, 7 exhibited ABTS radical scavenging activity with IC50 ranging from 105.96 µM to 167.67 µM. Compound 3 demonstrated a synergistic induction effect on nigericin-activated NLRP3 inflammasome in THP-1 cell by LDH release method.

13.
J Transl Med ; 22(1): 475, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764033

RESUMO

PURPOSE: To analyze the role of and mechanism underlying obstructive sleep apnea (OSA)-derived exosomes in inducing non-alcoholic fatty liver (NAFLD). METHODS: The role of OSA-derived exosomes was analyzed in inducing hepatocyte fat accumulation in mice models both in vivo and in vitro. RESULTS: OSA-derived exosomes caused fat accumulation and macrophage activation in the liver tissue. These exosomes promoted fat accumulation; steatosis was more noticeable in the presence of macrophages. Macrophages could internalize OSA-derived exosomes, which promoted macrophage polarization to the M1 type. Moreover, it inhibited sirtuin-3 (SIRT3)/AMP-activated protein kinase (AMPK) and autophagy and promoted the activation of nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasomes. The use of 3-methyladenine (3-MA) to inhibit autophagy blocked NLRP3 inflammasome activation and inhibited the M1 polarization of macrophages. miR-421 targeting inhibited SIRT3 protein expression in the macrophages. miR-421 was significantly increased in OSA-derived exosomes. Additionally, miR-421 levels were increased in OSA + NAFLD mice- and patient-derived exosomes. In the liver tissues of OSA and OSA + NAFLD mice, miR-421 displayed similar co-localization with the macrophages. Intermittent hypoxia-induced hepatocytes deliver miR-421 to the macrophages via exosomes to inhibit SIRT3, thereby participating in macrophage M1 polarization. After OSA and NAFLD modeling in miR-421-/- mice, liver steatosis and M1 polarization were significantly reduced. Additionally, in the case of miR-421 knockout, the inhibitory effects of OSA-derived exosomes on SIRT3 and autophagy were significantly alleviated. Furthermore, their effects on liver steatosis and macrophage M1 polarization were significantly reduced. CONCLUSIONS: OSA promotes the delivery of miR-421 from the hepatocytes to macrophages. Additionally, it promotes M1 polarization by regulating the SIRT3/AMPK-autophagy pathway, thereby causing NAFLD.


Assuntos
Autofagia , Polaridade Celular , Exossomos , Macrófagos , Camundongos Endogâmicos C57BL , MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Sirtuína 3 , Apneia Obstrutiva do Sono , Exossomos/metabolismo , Animais , Sirtuína 3/metabolismo , Sirtuína 3/genética , MicroRNAs/metabolismo , MicroRNAs/genética , Macrófagos/metabolismo , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Humanos , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/metabolismo , Masculino , Camundongos , Hepatócitos/metabolismo , Hepatócitos/patologia , Inflamassomos/metabolismo , Sequência de Bases , Fígado/patologia , Fígado/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
14.
Sensors (Basel) ; 24(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732850

RESUMO

Standard beams are mainly used for the calibration of strain sensors using their load reconstruction models. However, as an ill-posed inverse problem, the solution to these models often fails to converge, especially when dealing with dynamic loads of different frequencies. To overcome this problem, a piecewise Tikhonov regularization method (PTR) is proposed to reconstruct dynamic loads. The transfer function matrix is built both using the denoised excitations and the corresponding responses. After singular value decomposition (SVD), the singular values are divided into submatrices of different sizes by utilizing a piecewise function. The regularization parameters are solved by optimizing the piecewise submatrices. The experimental result shows that the MREs of the PTR method are 6.20% at 70 Hz and 5.86% at 80 Hz. The traditional Tikhonov regularization method based on GCV exhibits MREs of 28.44% and 29.61% at frequencies of 70 Hz and 80 Hz, respectively, whereas the L-curve-based approach demonstrates MREs of 29.98% and 18.42% at the same frequencies. Furthermore, the PREs of the PTR method are 3.54% at 70 Hz and 3.73% at 80 Hz. The traditional Tikhonov regularization method based on GCV exhibits PREs of 27.01% and 26.88% at frequencies of 70 Hz and 80 Hz, respectively, whereas the L-curve-based approach demonstrates PREs of 29.50% and 15.56% at the same frequencies. All in all, the method proposed in this paper can be extensively applied to load reconstruction across different frequencies.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38738556

RESUMO

OBJECTIVE: Neuromyelitis optica spectrum disorders (NMOSD) are rare inflammatory astrocytic diseases of the central nervous system (CNS). The roles of immune response gene-1 (IRG1) and the IRG1-itaconic acid-NLRP3 inflammatory pathway in the pathogenesis of NMOSD and the effects of 4-octyl itaconate (4-OI) on the NLRP3 inflammatory pathway in NMOSD are unclear. This study aimed to determine the role of IRG1 and the activation status of the NLRP3 inflammatory pathway in acute-onset NMOSD and to investigate the inhibitory effects of 4-OI on NLRP3 inflammasome activation via the IRG1-itaconic acid-NLRP3 pathway in monocytes and macrophages by using in vitro models. METHODS: Peripheral blood mononuclear cells (PBMCs) and serum were collected from patients with acute NMOSDs and healthy controls (HC), followed by monocyte typing and detection of the expression of NLRP3-related inflammatory factors. Subsequently, the effects of 4-OI on the IRG1-itaconic acid-NLRP3 pathway were investigated in peripheral monocytes from patients with NMOSD and in macrophages induced by human myeloid leukemia mononuclear cells (THP-1 cells) via in vitro experiments. RESULTS: Patients with acute NMOSD exhibited upregulated IRG1 expression. In particular, the upregulation of the expression of the NLRP3 inflammasome and proinflammatory factors was notable in monocytes in acute NMOSD patients. 4-OI inhibited the activation of the IRG1-itaconic acid-NLRP3 inflammatory pathway in the PBMCs of patients with NMOSD. INTERPRETATION: 4-OI could effectively inhibit NLRP3 signaling, leading to the inhibition of proinflammatory cytokine production in patients with NMOSD-derived PBMCs and in a human macrophage model. Thus, 4-OI and itaconate could have important therapeutic value for the treatment of NMOSD in the future.

16.
Int J Womens Health ; 16: 819-827, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38765204

RESUMO

Objective: To investigate the magnetic resonance imaging (MRI) features of women with prior second-trimester pregnancy loss, and to establish a nomogram prediction model for subsequent miscarriage. Methods: A retrospective cohort study of women with prior second-trimester pregnancy loss from January 2018 to December 2021 in Second Affiliated Hospital of Soochow University was performed. A total of 245 patients were included. Data from January 2018 to December 2019 were used to construct the model, and data from January 2020 to December 2021 were used to evaluate the model. Data on maternal demographic characteristics, MRI cervical measurements were extracted. The prediction model was constructed with independent variables determined by multivariate logistic regression analyses. Through receiver-operating characteristic (ROC) curve analysis, the predictive ability of the model for subsequent second trimester pregnancy loss in women was evaluated, and internal validation was performed through validation data. Results: Thin cervix was observed in 77 (31.42%) women with prior second-trimester pregnancy loss, the mean longitudinal diameter of cervical canal on MRI was 11.76±2.75mm. The model reached a sensitivity of 80%, specificity of 75.90%, positive predictive value (PPV) of 55.80% and negative predictive value of 90.90%; ROC characteristics proved that the model was superior to any single parameter with an AUC of 0.826. Conclusion: Our observations showed that thin cervix and longitudinal diameter of cervical canal reliably predicted second trimester pregnancy loss. We developed and validated a nomogram model to predict the individual probability of second trimester pregnancy loss in the next pregnancy and hopefully improve the prediction and indication of interventions.

17.
World J Clin Cases ; 12(14): 2308-2315, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38765748

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a leading risk factor for the development and progression of chronic kidney disease (CKD). However, an accurate and convenient marker for early detection and appropriate management of CKD in individuals with T2DM is limited. Recent studies have demonstrated a strong correlation between the neutrophil-to-lymphocyte ratio (NLR) and CKD. Nonetheless, the predictive value of NLR for renal damage in type 2 diabetic patients remains understudied. AIM: To investigate the relationship between NLR and renal function in T2DM patients. METHODS: This study included 1040 adults aged 65 or older with T2DM from Shanghai's Community Health Service Center. The total number of neutrophils and lymphocytes was detected, and NLR levels were calculated. CKD was defined as an estimated glomerular filtration rate ≤ 60 mL/min/1.73 m². Participants were divided into four groups based on NLR levels. The clinical data and biochemical characteristics were compared among groups. A multivariate logistic regression model was used to analyze the association between NLR levels and CKD. RESULTS: Significant differences were found in terms of sex, serum creatinine, blood urea nitrogen, total cholesterol, and low-density lipoprotein cholesterol among patients with T2DM in different NLR groups (P < 0.0007). T2DM patients in the highest NLR quartile had a higher prevalence of CKD (P for trend = 0.0011). Multivariate logistic regression analysis indicated that a high NLR was an independent risk factor for CKD in T2DM patients even after adjustment for important clinical and pathological parameters (P = 0.0001, odds ratio = 1.41, 95% confidence intervals: 1.18-1.68). CONCLUSION: An elevated NLR in patients with T2DM is associated with higher prevalence of CKD, suggesting that it could be a marker for the detection and evaluation of diabetic kidney disease.

18.
Int J Nanomedicine ; 19: 4181-4197, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766656

RESUMO

Purpose: The committed differentiation fate regulation has been a difficult problem in the fields of stem cell research, evidence showed that nanomaterials could promote the differentiation of stem cells into specific cell types. Layered double hydroxide (LDH) nanoparticles possess the regulation function of stem cell fate, while the underlying mechanism needs to be investigated. In this study, the process of embryonic stem cells (ESCs) differentiate to neural progenitor cells (NPCs) by magnesium aluminum LDH (MgAl-LDH) was investigated. Methods: MgAl-LDH with diameters of 30, 50, and 100 nm were synthesized and characterized, and their effects on the cytotoxicity and differentiation of NPCs were detected in vitro. Dot blot and MeRIP-qPCR were performed to detect the level of m6A RNA methylation in nanoparticles-treated cells. Results: Our work displayed that LDH nanoparticles of three different sizes were biocompatible with NPCs, and the addition of MgAl-LDH could significantly promote the process of ESCs differentiate to NPCs. 100 nm LDH has a stronger effect on promoting NPCs differentiation compared to 30 nm and 50 nm LDH. In addition, dot blot results indicated that the enhanced NPCs differentiation by MgAl-LDH was closely related to m6A RNA methylation process, and the major modification enzyme in LDH controlled NPCs differentiation may be the m6A RNA methyltransferase METTL3. The upregulated METTL3 by LDH increased the m6A level of Sox1 mRNA, enhancing its stability. Conclusion: This work reveals that MgAl-LDH nanoparticles can regulate the differentiation of ESCs into NPCs by increasing m6A RNA methylation modification of Sox1.


Assuntos
Diferenciação Celular , Nanopartículas , Células-Tronco Neurais , Diferenciação Celular/efeitos dos fármacos , Animais , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Camundongos , Nanopartículas/química , Metilação/efeitos dos fármacos , Hidróxidos/química , Hidróxidos/farmacologia , Metiltransferases/metabolismo , Metiltransferases/genética , Tamanho da Partícula , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Adenosina/farmacologia , Adenosina/química , Adenosina/análogos & derivados , Hidróxido de Alumínio/química , Hidróxido de Alumínio/farmacologia , Hidróxido de Magnésio/química , Hidróxido de Magnésio/farmacologia
19.
Chemosphere ; 359: 142304, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38734253

RESUMO

Toxic organic and heavy metal contaminants commonly exist in industrial waste stream(s) and treatment is of great challenge. In this study, a dielectric barrier discharge (DBD) non-thermal plasma technology was employed for the simultaneous treatment of two important contaminants, chloramphenicol (CAP) and Cr(VI) in an aqueous solution through redox transformations. More than 70% of CAP and 20% of TOC were degraded in 60 min, while Cr(VI) was completely removed in 10 min. The hydroxyl radicals were the main active species for the degradation. Meanwhile, the consumption of hydroxyl radicals was beneficial to the reduction of Cr(VI). The synergistic effect was investigated between CAP degradation and Cr(VI) reduction. The reduction of Cr(VI) would be enhanced in the presence of CAP with a low concentration and could be inhibited under a high concentration, because part of hydroxyl radicals could be consumed by the low-concentration CAP and the obtained intermediates with a higher kinetic rate. However, CAP with a high concentration could react with such reductive species as eaq- and •H, which could compete with Cr(VI) and inhibit the reduction. In addition, the presence of Cr(VI) enhanced the degradation and mineralization of CAP; the study of obtained intermediates indicated that the presence of Cr(VI) changed the degradation path of CAP as Cr(VI) would react with reductive species, enhance the generation of hydroxyl radicals, and cause more hydroxylation reactions. Moreover, the mechanism for the simultaneous redox transformations of CAP and Cr(VI) was illustrated. This study indicates that the DBD non-thermal plasma technology can be one of better solutions for simultaneous elimination of heavy metal and organic contaminants in aquatic environments.

20.
J Sci Food Agric ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38757804

RESUMO

BACKGROUND: Okra contains flavonoids and vitamin C as antioxidants and it contains polysaccharides as immunomodulators. Flavonoids regulate the inflammatory response in mice and may be related to gut microbiota. This study therefore aimed to investigate the impact of okra extract (OE) on inflammation in mice and to elucidate its underlying mechanism. METHOD: Forty male Kunming (KM) mice were categorized into four groups: the control (CON) group, the lipopolysaccharide stimulation (LPS) group, the 5 mg mL-1 OE intervention (LPS + OE) group, and the 5 mg mL-1 OE supplementation plus mixed antibiotics (LPS + OE + ABX) group. RESULTS: The results showed that, compared with the OE group, the expression of inflammatory signaling pathway genes was upregulated and gut barrier genes were inhibited in the OE + ABX group. The Fxr receptor was activated and the abundance of Akkermansia was increased after OE supplementation, whereas the effect was reversed in the OE + ABX group. Meanwhile, Fxr was correlated positively with Akkermansia. CONCLUSION: The OE supplementation alleviated the inflammatory response in mice under LPS stimulation, accompanied by changes in gut microbiota and bile acid receptors, whereas the addition of antibiotics caused a disturbance to the gut microbiota in the OE group, thus reducing the effect of OE in alleviating the inflammatory response. © 2024 Society of Chemical Industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...