Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.140
Filtrar
1.
J Colloid Interface Sci ; 672: 574-588, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38852358

RESUMO

In this paper, microgels with uniform particle size were prepared by physically cross-linking the hydrophobically modified chitosan (h-CS) with sodium phytate (SP). The effects of cross-linking density on the interfacial adsorption kinetics, viscoelasticity, stress relaxation, and micorheological properties of the hydrophobically modified chitosan microgels (h-CSMs) at the oil-water interface were extensively investigated by the dilatational rheology, compressional rheology, and particle tracing microrheology. The results were correlated with the particle size, morphology, and elasticity of the microgels characterized by dynamic light scattering and atomic force microscopy. It was found that with the increase of cross-linking density, the h-CSMs changed from a polymer-like state to ultra-soft fussy spheres with higher elastic modulus. The compression isotherms demonstrated multi-stage increase caused by the interaction between the shells and that between the cores of the microgels successively. As the increase of cross-linking density, the h-CSMs diffused slower to the oil-water interface, but demonstrating faster permeation adsorption and rearrangement at the oil-water interface, finally forming interfacial layers of higher viscoelastic modulus due to the core-core interaction. Both the initial tension relaxation and the microgel rearrangement after interface expansion became faster as the microgel elasticity increased. The interfacial microrheology demonstrated dynamic caging effect caused by neighboring microgels. This article provides a more comprehensive understanding of the behaviors of polysaccharide microgels at the oil-water interface.

2.
J Clin Epidemiol ; : 111429, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38880436

RESUMO

OBJECTIVE: Patient and public versions of guidelines (PVGs) have gradually gained wide recognition and attention from the public and the society due to their scientific, professional and authoritative characteristics. This study aims to survey the awareness and knowledge of PVGs among stakeholders in China. STUDY DESIGN AND SETTING: This was a cross-sectional survey among stakeholder (guideline developers, clinicians, journal editors, patients and the public) in China. We self-designed the questionnaire and distributed it through the Questionnaire Star platform. The primary outcomes were awareness of PVGs, and opinions about the development methodology, writing, dissemination and implementation of PVGs. The Kruskal Wallis H test and post hoc multiple comparison tests were used to compare the levels of awareness of PVGs between different subgroups of respondents. RESULTS: A total of 1319 valid questionnaires were collected: 722 from guideline developers, 136 from clinicians, 83 from journal editors, 284 from patients and 94 from members of the public. Of all respondents, 253 (19.2%) had not heard of PVGs, 349 (26.5%) had heard of PVGs but had no further knowledge, 475 (36.0%) had some knowledge of PVGs, and 242 (18.3%) were familiar with or had participated in the development of PVGs. Guideline developers, clinicians and journal editors had higher scores for awareness than patients and the public. Higher education and older age also correlated with higher awareness of PVGs. Over half (52.9%) of guideline developers considered that both rewriting of the source guidelines and direct development as independent documents were appropriate methods for developing PVGs. The survey respondents agreed that clinicians (97.3%), guideline methodologists (76.6%), representatives of patients and the public (74.5%) and medical editors or writers (63.4%) should participate in the development of PVGs. More than 80% of the respondents agreed that the quality of evidence and strength of recommendations should be presented, however, there was no consensus on the form of presentation. CONCLUSIONS: The level of awareness of PVGs among stakeholders in China is relatively low and differs between different stakeholder groups, but the majority of key stakeholders have a positive attitude towards PVGs. The collection of the perspectives and opinions on the development methods, writing, dissemination and implementation provides a key reference and basis for the future optimization and improvement of PVGs development.

3.
Ying Yong Sheng Tai Xue Bao ; 35(4): 1025-1032, 2024 Apr 18.
Artigo em Chinês | MEDLINE | ID: mdl-38884237

RESUMO

In this study, we explored the thickness influence of undecomposed litter layer and semi-decomposed litter layer on the natural regeneration in an artificial pure forest of Larix principis-rupprechtii in the forest area of Guandi Mountain. We divided the litter into an undecomposed layer and a semi-decomposed layer, which was further divided into eight groups based on the thickness. The results showed that when the thickness of undecomposed layer was 0.32-0.83 cm, and that of semi-decomposed layer was 0.18-0.89 cm, the regeneration index was larger (≥0.15), and the regeneration was better. When the thickness of undecomposed layer was more than 1.1 cm and that of semi-decomposed layer was more than 0.5 cm, the regeneration index was smaller (≤0.07), and the rege-neration of understory was worse. Results of redundancy analysis showed that the undecomposed layer thickness of litter had a high and stable explanatory ability for natural regeneration, with a contribution rate of 38.7%, while the semi-decomposed layer thickness had no significant effect on natural regeneration. Structural equation modeling revealed that the thickness of undecomposed layer of litter increased the mechanical resistance to seed germination which had a negative direct effect on natural regeneration (-0.617), and a positive indirect effect on natural rege-neration by influencing the content of alkali-hydrolyzed nitrogen and available phosphorus (+0.178). The combined effects (-0.439) showed an inhibitory effect on the natural regeneration. In conclusion, the thickness of undecomposed layer of litter under L. principis-rupprechtii was most closely related to natural regeneration, and the thickness of semi-decomposed layer had a minimal effect on natural regeneration.


Assuntos
Larix , Larix/crescimento & desenvolvimento , China , Folhas de Planta/crescimento & desenvolvimento , Conservação dos Recursos Naturais , Ecossistema , Florestas , Solo/química
4.
Molecules ; 29(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38893498

RESUMO

Due to the high content of impurities such as proteins in tamarind seed polysaccharide (TSP), they must be separated and purified before it can be used. TSP can disperse in cold water, but a solution can only be obtained by heating the mixture. Therefore, it is important to understand the dispersion and dissolution process of TSP at different temperatures to expand the application of TSP. In this study, pasting behavior and rheological properties as a function of temperature were characterized in comparison with potato starch (PS), and their relationship with TSP molecular features and microstructure was revealed. Pasting behavior showed that TSP had higher peak viscosity and stronger thermal stability than PS. Rheological properties exhibited that G' and G'' of TSP gradually increased with the increase in temperature, without exhibiting typical starch gelatinization behavior. The crystalline or amorphous structure of TSP and starch was disrupted under different temperature treatment conditions. The SEM results show that TSP particles directly transformed into fragments with the temperature increase, while PS granules first expanded and then broken down into fragments. Therefore, TSP and PS underwent different dispersion mechanisms during the dissolution process: As the temperature gradually increased, TSP possibly underwent a straightforward dispersion and was then dissolved in aqueous solution, while PS granules initially expanded, followed by disintegration and dispersion.


Assuntos
Polissacarídeos , Reologia , Sementes , Amido , Tamarindus , Temperatura , Tamarindus/química , Polissacarídeos/química , Sementes/química , Viscosidade , Amido/química , Fenômenos Químicos
5.
Mol Med ; 30(1): 93, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898476

RESUMO

BACKGROUND: The epithelial-mesenchymal transition (EMT) of human bronchial epithelial cells (HBECs) is essential for airway remodeling during asthma. Wnt5a has been implicated in various lung diseases, while its role in the EMT of HBECs during asthma is yet to be determined. This study sought to define whether Wnt5a initiated EMT, leading to airway remodeling through the induction of autophagy in HBECs. METHODS: Microarray analysis was used to investigate the expression change of WNT5A in asthma patients. In parallel, EMT models were induced using 16HBE cells by exposing them to house dust mites (HDM) or interleukin-4 (IL-4), and then the expression of Wnt5a was observed. Using in vitro gain- and loss-of-function approaches via Wnt5a mimic peptide FOXY5 and Wnt5a inhibitor BOX5, the alterations in the expression of the epithelial marker E-cadherin and the mesenchymal marker protein were observed. Mechanistically, the Ca2+/CaMKII signaling pathway and autophagy were evaluated. An autophagy inhibitor 3-MA was used to examine Wnt5a in the regulation of autophagy during EMT. Furthermore, we used a CaMKII inhibitor KN-93 to determine whether Wnt5a induced autophagy overactivation and EMT via the Ca2+/CaMKII signaling pathway. RESULTS: Asthma patients exhibited a significant increase in the gene expression of WNT5A compared to the healthy control. Upon HDM and IL-4 treatments, we observed that Wnt5a gene and protein expression levels were significantly increased in 16HBE cells. Interestingly, Wnt5a mimic peptide FOXY5 significantly inhibited E-cadherin and upregulated α-SMA, Collagen I, and autophagy marker proteins (Beclin1 and LC3-II). Rhodamine-phalloidin staining showed that FOXY5 resulted in a rearrangement of the cytoskeleton and an increase in the quantity of stress fibers in 16HBE cells. Importantly, blocking Wnt5a with BOX5 significantly inhibited autophagy and EMT induced by IL-4 in 16HBE cells. Mechanistically, autophagy inhibitor 3-MA and CaMKII inhibitor KN-93 reduced the EMT of 16HBE cells caused by FOXY5, as well as the increase in stress fibers, cell adhesion, and autophagy. CONCLUSION: This study illustrates a new link in the Wnt5a-Ca2+/CaMKII-autophagy axis to triggering airway remodeling. Our findings may provide novel strategies for the treatment of EMT-related diseases.


Assuntos
Asma , Autofagia , Células Epiteliais , Transição Epitelial-Mesenquimal , Proteína Wnt-5a , Humanos , Proteína Wnt-5a/metabolismo , Proteína Wnt-5a/genética , Asma/metabolismo , Asma/patologia , Asma/genética , Células Epiteliais/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Brônquios/metabolismo , Brônquios/patologia , Masculino , Linhagem Celular , Feminino , Pessoa de Meia-Idade , Transdução de Sinais , Adulto
6.
Int J Mol Sci ; 25(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891819

RESUMO

Photothermal therapy (PTT) is a promising cancer therapy modality with significant advantages such as precise targeting, convenient drug delivery, better efficacy, and minimal adverse effects. Photothermal therapy effectively absorbs the photothermal transducers in the near-infrared region (NIR), which induces the photothermal effect to work. Although PTT has a better role in tumor therapy, it also suffers from low photothermal conversion efficiency, biosafety, and incomplete tumor elimination. Therefore, the use of nanomaterials themselves as photosensitizers, the targeted modification of nanomaterials to improve targeting efficiency, or the combined use of nanomaterials with other therapies can improve the therapeutic effects and reduce side effects. Notably, noble metal nanomaterials have attracted much attention in PTT because they have strong surface plasmon resonance and an effective absorbance light at specific near-infrared wavelengths. Therefore, they can be used as excellent photosensitizers to mediate photothermal conversion and improve its efficiency. This paper provides a comprehensive review of the key role played by noble metal nanomaterials in tumor photothermal therapy. It also describes the major challenges encountered during the implementation of photothermal therapy.


Assuntos
Nanopartículas Metálicas , Neoplasias , Terapia Fototérmica , Humanos , Terapia Fototérmica/métodos , Neoplasias/terapia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Animais , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico
7.
Histol Histopathol ; : 18764, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38835215

RESUMO

BACKGROUND: Hyperglycemia is a risk factor for impaired renal function, including cellular metabolic disturbance, apoptosis, inflammation, and histologic lesion. This study aims to investigate the potential therapeutic targeting of cyclin-dependent kinase 5 (Cdk5) in hyperglycemia-induced podocyte dysfunction and renal damage. METHODS: Cell viability and apoptosis of podocytes were assessed through CCK-8 and TUNEL staining, respectively, following exposure to normal glucose (NG; 5 mM), high glucose (HG; 30 mM), or treatment with Cdk5 inhibitors (trans-resveratrol, myricetin, salvianolic acid A, and BML-259). Diabetic mice were established by intraperitoneal injection of freshly streptozotocin (STZ), which was given at a dose of 35 mg/kg in five successive injections. Additionally, histochemical staining was employed to evaluate the morphologic lesion of the kidney. RESULTS: Cdk5 was found to be activated by HG stimulation both in vitro and in vivo. Notably, the inhibition of Cdk5 effectively mitigated the podocyte dysfunction induced by HG, including growth inhibition, membrane damage, and apoptosis. The compounds Trans-resveratrol, myricetin, salvianolic acid A, and BML-259 exhibited low binding energy values of -8.032 kcal/mol, -8.693 kcal/mol, -8.743 kcal/mol, and -10.952 kcal/mol, respectively, indicating strong and stable binding affinity between these candidates and Cdk5. The results of in vivo experimental analysis demonstrate that Cdk5 inhibitors, namely trans-resveratrol, myricetin, salvianolic acid A, and BML-259, confer protection against tubular and glomerular lesions induced by hyperglycemia. CONCLUSION: Both myricetin and BML-259 exhibit comparable protective effects on renal injury by inhibiting Cdk5.

8.
Int J Nanomedicine ; 19: 5837-5858, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887692

RESUMO

Purpose: Phototherapy, known for its high selectivity, few side effects, strong controllability, and synergistic enhancement of combined treatments, is widely used in treating diseases like cervical cancer. Methods: In this study, hollow mesoporous manganese dioxide was used as a carrier to construct positively charged, poly(allylamine hydrochloride)-modified nanoparticles (NPs). The NP was efficiently loaded with the photosensitizer indocyanine green (ICG) via the addition of hydrogen phosphate ions to produce a counterion aggregation effect. HeLa cell membrane encapsulation was performed to achieve the final M-HMnO2@ICG NP. In this structure, the HMnO2 carrier responsively degrades to release ICG in the tumor microenvironment, self-generates O2 for sensitization to ICG-mediated photodynamic therapy (PDT), and consumes GSH to expand the oxidative stress therapeutic effect [chemodynamic therapy (CDT) + PDT]. The ICG accumulated in tumor tissues exerts a synergistic PDT/photothermal therapy (PTT) effect through single laser irradiation, improving efficiency and reducing side effects. The cell membrane encapsulation increases nanomedicine accumulation in tumor tissues and confers an immune evasion ability. In addition, high local temperatures induced by PTT can enhance CDT. These properties of the NP enable full achievement of PTT/PDT/CDT and targeted effects. Results: Mn2+ can serve as a magnetic resonance imaging agent to guide therapy, and ICG can be used for photothermal and fluorescence imaging. After its intravenous injection, M-HMnO2@ICG accumulated effectively at mouse tumor sites; the optimal timing of in-vivo laser treatment could be verified by near-infrared fluorescence, magnetic resonance, and photothermal imaging. The M-HMnO2@ICG NPs had the best antitumor effects among treatment groups under near-infrared light conditions, and showed good biocompatibility. Conclusion: In this study, we designed a nano-biomimetic delivery system that improves hypoxia, responds to the tumor microenvironment, and efficiently loads ICG. It provides a new economical and convenient strategy for synergistic phototherapy and CDT for cervical cancer.


Assuntos
Verde de Indocianina , Compostos de Manganês , Imagem Multimodal , Nanopartículas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Microambiente Tumoral , Neoplasias do Colo do Útero , Neoplasias do Colo do Útero/terapia , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/tratamento farmacológico , Feminino , Microambiente Tumoral/efeitos dos fármacos , Humanos , Verde de Indocianina/química , Verde de Indocianina/farmacologia , Fotoquimioterapia/métodos , Animais , Células HeLa , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Nanopartículas/química , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Camundongos , Imagem Multimodal/métodos , Terapia Fototérmica/métodos , Óxidos/química , Óxidos/farmacologia , Camundongos Endogâmicos BALB C , Poliaminas/química , Poliaminas/farmacologia , Imageamento por Ressonância Magnética/métodos
9.
Int Wound J ; 21(6): e14940, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38888416

RESUMO

Bacterial infection is the most common complication in wound healing, highlighting an urgent need for the development of innovative antibacterial technologies and treatments to address the growing threats posed by bacterial infections. Black phosphorus nanosheets (BPNSs), as a promising two-dimensional nanomaterial, have been utilized in treating infected wounds. However, BP's limited stability restricts its application. In this study, we enhance BP's stability and its antibacterial properties by anchoring gallium ions (Ga3+) onto BP's surface, creating a novel antibacterial platform. This modification reduces BP's electron density and enhances its antibacterial capabilities through a synergistic effect. Under near-infrared (NIR) irradiation, the BP/Ga3+ combination exerts antibacterial effects via photothermal therapy (PTT) and photodynamic therapy (PDT), while also releasing Ga3+. The Ga3+ employ a 'Trojan horse strategy' to disrupt iron metabolism, significantly boosting the antibacterial efficacy of the complex. This innovative material offers a viable alternative to antibiotics and holds significant promise for treating infected wounds and aiding skin reconstruction.


Assuntos
Antibacterianos , Gálio , Fósforo , Cicatrização , Gálio/farmacologia , Gálio/uso terapêutico , Cicatrização/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Humanos , Animais , Nanoestruturas/uso terapêutico , Infecção dos Ferimentos/tratamento farmacológico , Fotoquimioterapia/métodos , Infecções Bacterianas/tratamento farmacológico , Camundongos , Terapia Fototérmica/métodos
10.
Sci Rep ; 14(1): 13670, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871968

RESUMO

Cervical cancer, one of the most common gynecological cancers, is primarily caused by human papillomavirus (HPV) infection. The development of resistance to chemotherapy is a significant hurdle in treatment. In this study, we investigated the mechanisms underlying chemoresistance in cervical cancer by focusing on the roles of glycogen metabolism and the pentose phosphate pathway (PPP). We employed the cervical cancer cell lines HCC94 and CaSki by manipulating the expression of key enzymes PCK1, PYGL, and GYS1, which are involved in glycogen metabolism, through siRNA transfection. Our analysis included measuring glycogen levels, intermediates of PPP, NADPH/NADP+ ratio, and the ability of cells to clear reactive oxygen species (ROS) using biochemical assays and liquid chromatography-mass spectrometry (LC-MS). Furthermore, we assessed chemoresistance by evaluating cell viability and tumor growth in NSG mice. Our findings revealed that in drug-resistant tumor stem cells, the enzyme PCK1 enhances the phosphorylation of PYGL, leading to increased glycogen breakdown. This process shifts glucose metabolism towards PPP, generating NADPH. This, in turn, facilitates ROS clearance, promotes cell survival, and contributes to the development of chemoresistance. These insights suggest that targeting aberrant glycogen metabolism or PPP could be a promising strategy for overcoming chemoresistance in cervical cancer. Understanding these molecular mechanisms opens new avenues for the development of more effective treatments for this challenging malignancy.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Glicogênio , Células-Tronco Neoplásicas , Fosfoenolpiruvato Carboxiquinase (GTP) , Espécies Reativas de Oxigênio , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Animais , Camundongos , Linhagem Celular Tumoral , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Glicogênio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Glicogenólise , Via de Pentose Fosfato/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
11.
Nanoscale ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847457

RESUMO

In the field of hydrogen production, MoS2 demonstrates good catalytic properties for the hydrogen evolution reaction (HER) which improve when doped with metal cations. However, while the role of sulfur atoms as active sites in the HER is largely reported, the role of metal atoms (i.e. molybdenum or the dopant cations) has yet to be studied in depth. To understand the role of the metal dopant, we study MoS2 thin films doped with Co and Mn ions. We identify the contribution of the electronic bands of the Mn and Co dopants to the integral valence band of the material using in situ resonant photoemission measurements. We demonstrate that Mn and Co dopants act differently: Mn doping favors the shift of the S-Mo hybridized band towards the Fermi level, while in the case of Co doping it is the less hybridized Co band that shifts closer to the Fermi level. Doping with Mn increases the effectiveness of S as the active site, thus improving the HER, while doping with Co introduces the metallic site of Co as the active site, which is less effective in improving HER properties. We therefore clarify the role of the dopant cation in the electronic structure determining the active site for hydrogen adsorption/desorption. Our results pave the way for the design of efficient materials for hydrogen production via the doping route, which can be extended to different catalytic reactions in the field of energy applications.

12.
Phys Chem Chem Phys ; 26(20): 14874-14882, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38738516

RESUMO

Perovskite/organic bulk heterojunction (BHJ) integrated solar cells have tremendous development potential to exceed the Shockley-Queisser limit efficiency of single-junction photovoltaics, due to the merits of spectra response extension. However, the presence of energy level barriers and severe non-radiative recombination at the interface between perovskite and BHJ greatly hindered the transport and collection of charge carriers, usually leading to large Voc and photocurrent loss, as well as the stability degradation of integrated devices. Therefore, investigating the interface properties of perovskite/BHJ is crucial for understanding the charge transport process and enhancing device performance. In this study, we effectively regulated the interface properties and charge transport in perovskite/BHJ integrated devices using a thermal annealing process. Using Kelvin probe microscopy, photoluminescence, and transient absorption spectroscopy, we revealed that moderate annealing treatment would contribute to forming close interface contact and provide more channels or pathways for charge transfer, which is advantageous for the interface charge collection and device performance. In addition, the lone pair electrons of acyl, thiophene and pyrrole function groups in polymer PDPP3T and PCBM can act as the Lewis base and provide electrons to the under-coordinated lead atoms or clusters in the perovskite, effectively passivating traps on the surface and grain boundaries of the perovskite through Lewis acid-base coordination. Finally, we improved the photovoltaic conversion efficiency of the device to 21.57% with enhanced stability using an optimized thermal annealing process. This study provides a comprehensive understanding of the integrated perovskite/BHJ interface properties, which could be extended to other optoelectronic devices based on a similar integrated structure.

13.
Pharmaceutics ; 16(5)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38794265

RESUMO

Sonodynamic therapy (SDT) has attracted significant attention in recent years as it is an innovative approach to tumor treatment. It involves the utilization of sound waves or ultrasound (US) to activate acoustic sensitizers, enabling targeted drug release for precise tumor treatment. This review aims to provide a comprehensive overview of SDT, encompassing its underlying principles and therapeutic mechanisms, the applications of nanomaterials, and potential synergies with combination therapies. The review begins by introducing the fundamental principle of SDT and delving into the intricate mechanisms through which it facilitates tumor treatment. A detailed analysis is presented, outlining how SDT effectively destroys tumor cells by modulating drug release mechanisms. Subsequently, this review explores the diverse range of nanomaterials utilized in SDT applications and highlights their specific contributions to enhancing treatment outcomes. Furthermore, the potential to combine SDT with other therapeutic modalities such as photothermal therapy (PTT) and chemotherapy is discussed. These combined approaches aim to synergistically improve therapeutic efficacy while mitigating side effects. In conclusion, SDT emerges as a promising frontier in tumor treatment that offers personalized and effective treatment options with the potential to revolutionize patient care. As research progresses, SDT is poised to play a pivotal role in shaping the future landscape of oncology by providing patients with a broader spectrum of efficacious and tailored treatment options.

14.
Microorganisms ; 12(5)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38792808

RESUMO

Enzyme-production microorganisms typically occupy a dominant position in composting, where cellulolytic microorganisms actively engage in the breakdown of lignocellulose. Exploring strains with high yields of cellulose-degrading enzymes holds substantial significance for the industrial production of related enzymes and the advancement of clean bioenergy. This study was inclined to screen cellulolytic bacteria, conduct genome analysis, mine cellulase-related genes, and optimize cellulase production. The potential carboxymethylcellulose-hydrolyzing bacterial strain Z2.6 was isolated from the maturation phase of pig manure-based compost with algae residuals as the feedstock and identified as Bacillus velezensis. In the draft genome of strain Z2.6, 31 related cellulolytic genes were annotated by the CAZy database, and further validation by cloning documented the existence of an endo-1,4-ß-D-glucanase (EC 3.2.1.4) belonging to the GH5 family and a ß-glucosidase (EC 3.2.1.21) belonging to the GH1 family, which are predominant types of cellulases. Through the exploration of ten factors in fermentation medium with Plackett-Burman and Box-Behnken design methodologies, maximum cellulase activity was predicted to reach 2.98 U/mL theoretically. The optimal conditions achieving this response were determined as 1.09% CMC-Na, 2.30% salinity, and 1.23% tryptone. Validation under these specified conditions yielded a cellulose activity of 3.02 U/mL, demonstrating a 3.43-fold degree of optimization. In conclusion, this comprehensive study underscored the significant capabilities of strain Z2.6 in lignocellulolytic saccharification and its potentialities for future in-depth exploration in biomass conversion.

16.
Front Immunol ; 15: 1361277, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711522

RESUMO

In the late stages of the COVID-19 pandemic, there's an increasing trend in opportunistic infections, including bacterial and fungal infections. This study discusses the treatment process of two cases of cryptococcal meningitis during the COVID-19 pandemic. It highlights the importance of laboratory testing for these co-infections and stresses the need for vigilance, early diagnosis, and proactive treatment to improve patient outcomes in the post-pandemic era.


Assuntos
Antifúngicos , COVID-19 , Meningite Criptocócica , SARS-CoV-2 , Humanos , Meningite Criptocócica/tratamento farmacológico , Meningite Criptocócica/diagnóstico , COVID-19/complicações , COVID-19/epidemiologia , Masculino , Antifúngicos/uso terapêutico , Pessoa de Meia-Idade , Feminino , Coinfecção , Adulto , Cryptococcus neoformans/isolamento & purificação , Resultado do Tratamento
17.
J Biomed Res ; : 1-14, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38808570

RESUMO

The abnormality of p53 tumor suppressor is crucial in lung cancer development, and p53 may regulate target gene promoters to combat cancer. Recent studies have shown extensive p53 binding to enhancer elements. However, whether p53 exerts a tumor suppressor role by shaping the enhancer landscape remains poorly understood. In the current study, we employed several functional genomics approaches to assess the enhancer activity at p53 binding sites throughout the genome based on our established TP53 knockout human bronchial epithelial cells (BEAS-2B). A total of 943 active regular enhancers and 370 super-enhancers (SEs) disappeared upon the deletion of p53, indicating that p53 modulates the activity of hundreds of enhancer elements. We found that one p53-dependent SE, located on chromosome 9 and designated as KLF4-SE, regulated the expression of the Krüppel-like factor 4 ( KLF4) gene. Furthermore, deletion of p53 significantly decreased the KLF4-SE enhancer activity and the KLF4 expression, but increased colony formation ability in the nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced cell transformation model. Subsequently, in TP53 knockout cells, the overexpression of KLF4 partially reversed the increased clonogenic capacity caused by p53 deficiency. Consistently, KLF4 expression also decreased in lung cancer tissues and cell lines. Overexpression of KLF4 significantly suppressed lung cancer cell proliferation and migration. Collectively, our results suggest that the regulation of enhancer formation and activity by p53 is an integral component of the p53 tumor suppressor function. Therefore, our findings offer novel insights into the regulation mechanism of p53 in lung oncogenesis and introduce a new strategy for screening therapeutic targets.

18.
J Foot Ankle Res ; 17(2): e12027, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38812103

RESUMO

PURPOSE: Abnormal lower limb movement patterns have been observed during walking in individuals with limited ankle dorsiflexion. The purpose of this study was to investigate the relationships of peak ankle dorsiflexion angle during the stance phase of walking with the lower extremity biomechanics at the corresponding moment and to determine a cutoff value of functional limited ankle dorsiflexion during walking. METHODS: Kinematic and kinetic data of 70 healthy participants were measured during walking. Spearman's correlation coefficients were calculated to establish the association between peak ankle dorsiflexion and angle and moment of ankle, knee, and hip, ground reaction force, and pelvic movement at peak ankle dorsiflexion. All variables significantly related to peak ankle dorsiflexion were extracted as a common factor by factor analysis. Maximally selected Wilcoxon statistic was used to perform a cutoff value analysis. RESULTS: Peak ankle dorsiflexion positively correlated with ankle plantar flexion moment (r = 0.432; p = 0.001), ankle external rotation moment (r = 0.251; p = 0.036), hip extension angle (r = 0.281; p = 0.018), hip flexion moment (r = 0.341; p = 0.004), pelvic ipsilateral rotation angle (r = 0.284; p = 0.017), and medial, anterior, and vertical ground reaction force (r = 0.324; p = 0.006, r = 0.543; p = 0.001, r = 0.322; p = 0.007), negatively correlated with knee external rotation angle (r = -0.394; p = 0.001) and hip adduction angle (r = -0.256; p = 0.032). The cutoff baseline value for all 70 participants was 9.03°. CONCLUSIONS: There is a correlation between the peak ankle dorsiflexion angle and the lower extremity biomechanics during walking. If the peak ankle dorsiflexion angle is less than 9.03°, the lower limb movement pattern will change significantly.


Assuntos
Articulação do Tornozelo , Extremidade Inferior , Amplitude de Movimento Articular , Caminhada , Humanos , Fenômenos Biomecânicos/fisiologia , Masculino , Feminino , Articulação do Tornozelo/fisiologia , Caminhada/fisiologia , Amplitude de Movimento Articular/fisiologia , Adulto , Extremidade Inferior/fisiologia , Adulto Jovem , Articulação do Quadril/fisiologia , Articulação do Joelho/fisiologia , Tornozelo/fisiologia
19.
Int J Biol Macromol ; 269(Pt 2): 132003, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697426

RESUMO

Self-assembled protein fibers have attracted much attention in the fields of medicine and food because of their high aspect ratio, polymorphic structure and strong surface hydrophobicity. In this study, three different gelation types of polysaccharides/ß-lactoglobulin fiber (Fblg) composite gels, including ionic alginate-Fblg gels, synergistic xanthan-Fblg gels, and double network agar-Fblg gels, were first prepared. The interactions between the polysaccharides and the Fblgs, the microstructure and mechanical properties of the composite gels were investigated using the light scattering, scanning electron microscopy, rheology and texture analysis in order to reveal their formation mechanisms. Then the loading and release properties of the water-soluble drug 5-fluorouracil (5-FU) and the hydrophobic drug curcumin (Cur) through these composite gels were further studied with release mechanisms determined by fitting different release models. It was found that the mechanical properties of the composite gels were determined by the mesh density of the three-dimensional networks formed inside the gels. The network structure and mechanical strength of the alginate-Fblg gels became weaker with the increase of Fblg content at pH 4 due to their attractive interaction which hindered the binding of Ca2+ to ALG, while the network and the strength of the alginate-Fblg gels didn't change much at pH 7 due to the repulsion between Alg and Fblg. The xanthan-Fblg gels formed lamellar structures with enhanced gel network and mechanical strength due to the hydrogen bonding and the electrostatic interaction with Fblg. The Agar-Fblg composite gel formed at 60 °C (above the gelation temperature of agar of 40 °C) had a denser double network structure and higher mechanical strength than that formed at 0 °C due to inhibition of diffusion of Ca2+ as salt bridges for Fblg. The hydrophilic drugs were loaded in the meshes of the composite gels and their release was determined by the structure of the composite gel networks, whereas the hydrophobic drugs were loaded by attaching to the Fblgs in the composite gels and their release was determined by the loading ability and strength of the gels. The study not only provided a new idea for the preparation and application of polysaccharide-protein fiber composite hydrogels, but also provided insights for improving the efficiency of drug carriers.


Assuntos
Liberação Controlada de Fármacos , Géis , Lactoglobulinas , Polissacarídeos , Lactoglobulinas/química , Géis/química , Polissacarídeos/química , Reologia , Alginatos/química , Portadores de Fármacos/química , Fluoruracila/química , Curcumina/química , Concentração de Íons de Hidrogênio , Polissacarídeos Bacterianos/química , Interações Hidrofóbicas e Hidrofílicas
20.
Cell Death Differ ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762596

RESUMO

Adipogenesis significantly contributes to healthy adipose tissue expansion in obesity. Increasing adipocyte number or function to alleviate adipose tissue overload could serve as a therapeutic strategy for both lipodystrophy and obesity-related metabolic syndrome. Inorganic pyrophosphatase (PPA1) is an enzyme that catalyzes the hydrolysis of pyrophosphate (PPi) and is involved in many biochemical reactions, but its function in adipose tissue has not been studied previously. In this study, we demonstrated that adipose-specific PPA1 knockout (PPA1AKO) mice showed lipodystrophy and spontaneously developed hepatic steatosis and severe insulin resistance under normal chow diet feeding. PPA1 deficiency suppressed the differentiation of primary adipocyte precursors and 3T3-L1 cells. Notably, PPA1 overexpression can restore inhibited adipogenesis in preadipocytes isolated from db/db mice and type 2 diabetes patients. Mechanistic studies have revealed that PPA1 acts as a positive regulator of early adipocyte differentiation by promoting CCAAT/enhancer-binding proteinß and δ (C/EBPß and δ) protein stability. Moreover, the function of PPA1 in adipogenesis is independent of its PPi catalytic activity. Collectively, our in vivo and in vitro findings demonstrated that PPA1 is a novel critical upstream regulator of adipogenesis, controlling adipose tissue development and whole-body metabolic homeostasis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...