Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1290776, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38078102

RESUMO

Plant-plant interactions under extreme environmental stress are still controversial. The stress gradient hypothesis (SGH) proposes that facilitation prevails under extreme environmental stresses, while an alternative view states that facilitation collapses or even switches back to competition at the extreme end of stress gradients. However, how the relationship between plant-plant interaction and periodic extreme flooding stress varies and its underlying mechanism are still unclear in a dam-regulated riparian ecosystem. We established a controlled experiment using two dominant species pairs (Cynodon dactylon-Cyperus rotundus and C. dactylon-Xanthium sibiricum) in the water level fluctuating zone of the Three Gorges Dam to examine their growth responses to the periodic extreme flooding stress. The results showed that as flooding stress increased, the competitive effect of C. dactylon on X. sibiricum shifted to facilitation, whereas the effect of X. sibiricum on C. dactylon maintained a strong inhibition. The plant height of X. sibiricum was the most important driver of the interaction between X. sibiricum and C. dactylon along the flooding gradient. The net effect of C. dactylon on C. rotundus shifted from neutral to negative, and the inhibitory effect of C. rotundus on C. dactylon became stronger at the extreme end of flooding stress. The root biomass of the two species was the key trait regulating their interaction with increasing flooding stress. Overall, the SGH was partially supported along our periodic extreme flooding stress gradient. Aboveground resource (light) might be the dominant factor driving the response of the interaction between annual plants and perennial clonal plants to periodic flooding stress, whereas belowground resource (water and nutrients) was probably the dominant factor for perennial clonal plants. Our study will help to further understand the environmental responses of plant-plant relationships and their regulatory mechanism, and the succession of riparian plant communities under extreme environmental changes, providing a basic theoretical basis and data support for the ecological restoration and management of riparian wetland vegetation.

2.
Sci Total Environ ; 857(Pt 3): 159660, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36302420

RESUMO

A functional response-effect approach could predict how environmental changes affect ecosystem functioning. However, few studies have applied this approach to inner saline-alkaline marsh ecosystems where soil saline-alkaline, flooding/drought and nutrients stresses threat ecological functioning. To disentangle the relationships between environmental conditions and ecosystem functioning, a total of 81 plots were investigated across 22 marsh sites dominated by Phragmites australis and Bolboschoenus planiculmis in Western Songnen Plain wetlands, China. For both plant communities combined, deep flooding supported communities with higher specific leaf area (SLA), plant height and leaf nitrogen (N) content but lower leaf thickness. On the contrary, high soil salt content induced low leaf N and phosphorus (P) content, SLA and plant height. Only light acquisition-related trait, plant height and SLA, was the key traits which determined the relationships between ecosystem functioning (aboveground biomass) and saline-alkaline wetland environment. Yet indirect key traits related nutrient and water acquisition such as leaf thickness, N and P content were also found, and mediated the response of aboveground biomass through the allometric relationships with plant height or SLA. For the individual species community, only plant height was the key trait shared by P. australis and B. planiculmis, indicating the universality of plant height as a key trait for grass and sedge plants to explain how ecosystem functioning responds to abiotic factors. Hence, our findings suggest that saltmarsh plants are more inclined to alter light-acquisition traits to mediate the response of ecosystem functioning to environmental changes and that plant height is a particularly useful trait to predict plant productivity in earth system models under future environmental changes in inner saline-alkaline wetlands.


Assuntos
Ecossistema , Áreas Alagadas , Biomassa , Poaceae , Solo , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA