Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Philos Trans R Soc Lond B Biol Sci ; 378(1879): 20220178, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37122221

RESUMO

Patients with pulmonary arterial hypertension (PAH) have a high burden of arrhythmias, including arrhythmias arising from sinus node dysfunction, and the aim of this study was to investigate the effects of PAH on the sinus node. In the rat, PAH was induced by an injection of monocrotaline. Three weeks after injection, there was a decrease of the intrinsic heart rate (heart rate in the absence of autonomic tone) as well as the normal heart rate, evidence of sinus node dysfunction. In the sinus node of PAH rats, there was a significant downregulation of many ion channels and Ca2+-handling genes that could explain the dysfunction: HCN1 and HCN4 (responsible for pacemaker current, If), Cav1.2, Cav1.3 and Cav3.1 (responsible for L- and T-type Ca2+ currents, ICa,L and ICa,T), NCX1 (responsible for Na+-Ca2+ exchanger) and SERCA2 and RYR2 (Ca2+-handling molecules). In the sinus node of PAH rats, there was also a significant upregulation of many fibrosis genes that could also help explain the dysfunction: vimentin, collagen type 1, elastin, fibronectin and transforming growth factor ß1. In summary, in PAH, there is a remodelling of ion channel, Ca2+-handling and fibrosis genes in the sinus node that is likely to be responsible for the sinus node dysfunction. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.


Assuntos
Hipertensão Arterial Pulmonar , Nó Sinoatrial , Ratos , Animais , Nó Sinoatrial/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Síndrome do Nó Sinusal/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Fibrose
2.
Prog Biophys Mol Biol ; 166: 61-85, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34197836

RESUMO

The funny current, If, was first recorded in the heart 40 or more years ago by Dario DiFrancesco and others. Since then, we have learnt that If plays an important role in pacemaking in the sinus node, the innate pacemaker of the heart, and more recently evidence has accumulated to show that If may play an important role in action potential conduction through the atrioventricular (AV) node. Evidence has also accumulated to show that regulation of the transcription and translation of the underlying Hcn genes plays an important role in the regulation of sinus node pacemaking and AV node conduction under normal physiological conditions - in athletes, during the circadian rhythm, in pregnancy, and during postnatal development - as well as pathological states - ageing, heart failure, pulmonary hypertension, diabetes and atrial fibrillation. There may be yet more pathological conditions involving changes in the expression of the Hcn genes. Here, we review the role of If and the underlying HCN channels in physiological and pathological changes of the sinus and AV nodes and we begin to explore the signalling pathways (microRNAs, transcription factors, GIRK4, the autonomic nervous system and inflammation) involved in this regulation. This review is dedicated to Dario DiFrancesco on his retirement.


Assuntos
Fibrilação Atrial , Nó Atrioventricular , Potenciais de Ação , Frequência Cardíaca , Humanos , Nó Sinoatrial
3.
Circ Heart Fail ; 14(7): e007505, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34190577

RESUMO

BACKGROUND: Purkinje fibers (PFs) control timing of ventricular conduction and play a key role in arrhythmogenesis in heart failure (HF) patients. We investigated the effects of HF on PFs. METHODS: Echocardiography, electrocardiography, micro-computed tomography, quantitative polymerase chain reaction, immunohistochemistry, volume electron microscopy, and sharp microelectrode electrophysiology were used. RESULTS: Congestive HF was induced in rabbits by left ventricular volume- and pressure-overload producing left ventricular hypertrophy, diminished fractional shortening and ejection fraction, and increased left ventricular dimensions. HF baseline QRS and corrected QT interval were prolonged by 17% and 21% (mean±SEMs: 303±6 ms HF, 249±11 ms control; n=8/7; P=0.0002), suggesting PF dysfunction and impaired ventricular repolarization. Micro-computed tomography imaging showed increased free-running left PF network volume and length in HF. mRNA levels for 40 ion channels, Ca2+-handling proteins, connexins, and proinflammatory and fibrosis markers were assessed: 50% and 35% were dysregulated in left and right PFs respectively, whereas only 12.5% and 7.5% changed in left and right ventricular muscle. Funny channels, Ca2+-channels, and K+-channels were significantly reduced in left PFs. Microelectrode recordings from left PFs revealed more negative resting membrane potential, reduced action potential upstroke velocity, prolonged duration (action potential duration at 90% repolarization: 378±24 ms HF, 249±5 ms control; n=23/38; P<0.0001), and arrhythmic events in HF. Similar electrical remodeling was seen at the left PF-ventricular junction. In the failing left ventricle, upstroke velocity and amplitude were increased, but action potential duration at 90% repolarization was unaffected. CONCLUSIONS: Severe volume- followed by pressure-overload causes rapidly progressing HF with extensive remodeling of PFs. The PF network is central to both arrhythmogenesis and contractile dysfunction and the pathological remodeling may increase the risk of fatal arrhythmias in HF patients.


Assuntos
Potenciais de Ação/fisiologia , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/fisiopatologia , Remodelação Ventricular/fisiologia , Animais , Estimulação Cardíaca Artificial/efeitos adversos , Eletrocardiografia/métodos , Frequência Cardíaca/fisiologia , Masculino , Modelos Animais , Coelhos , Microtomografia por Raio-X/efeitos adversos
4.
Prog Biophys Mol Biol ; 166: 86-104, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34004232

RESUMO

RESEARCH PURPOSE: The sinus node (SN) is the heart's primary pacemaker. Key ion channels (mainly the funny channel, HCN4) and Ca2+-handling proteins in the SN are responsible for its function. Transcription factors (TFs) regulate gene expression through inhibition or activation and microRNAs (miRs) do this through inhibition. There is high expression of macrophages and mast cells within the SN connective tissue. 'Novel'/unexplored TFs and miRs in the regulation of ion channels and immune cells in the SN are not well understood. Using RNAseq and bioinformatics, the expression profile and predicted interaction of key TFs and cell markers with key miRs in the adult human SN vs. right atrial tissue (RA) were determined. PRINCIPAL RESULTS: 68 and 60 TFs significantly more or less expressed in the SN vs. RA respectively. Among those more expressed were ISL1 and TBX3 (involved in embryonic development of the SN) and 'novel' RUNX1-2, CEBPA, GLI1-2 and SOX2. These TFs were predicted to regulate HCN4 expression in the SN. Markers for different cells: fibroblasts (COL1A1), fat (FABP4), macrophages (CSF1R and CD209), natural killer (GZMA) and mast (TPSAB1) were significantly more expressed in the SN vs. RA. Interestingly, RUNX1-3, CEBPA and GLI1 also regulate expression of these cells. MiR-486-3p inhibits HCN4 and markers involved in immune response. MAJOR CONCLUSIONS: In conclusion, RUNX1-2, CSF1R, TPSAB1, COL1A1 and HCN4 are highly expressed in the SN but not miR-486-3p. Their complex interactions can be used to treat SN dysfunction such as bradycardia. Interestingly, another research group recently reported miR-486-3p is upregulated in blood samples from severe COVID-19 patients who suffer from bradycardia.


Assuntos
COVID-19 , MicroRNAs , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , MicroRNAs/genética , SARS-CoV-2 , Nó Sinoatrial , Fatores de Transcrição/genética
5.
Front Physiol ; 12: 592229, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746765

RESUMO

BACKGROUND: The sinoatrial/sinus node (SAN) is the primary pacemaker of the heart. In humans, SAN is surrounded by the paranodal area (PNA). Although the PNA function remains debated, it is thought to act as a subsidiary atrial pacemaker (SAP) tissue and become the dominant pacemaker in the setting of sinus node disease (SND). Large animal models of SND allow characterization of SAP, which might be a target for novel treatment strategies for SAN diseases. METHODS: A goat model of SND was developed (n = 10) by epicardially ablating the SAN and validated by mapping of emergent SAP locations through an ablation catheter and surface electrocardiogram (ECG). Structural characterization of the goat SAN and SAP was assessed by histology and immunofluorescence techniques. RESULTS: When the SAN was ablated, SAPs featured a shortened atrioventricular conduction, consistent with the location in proximity of atrioventricular junction. SAP recovery time showed significant prolongation compared to the SAN recovery time, followed by a decrease over a follow-up of 4 weeks. Like the SAN tissue, the SAP expressed the main isoform of pacemaker hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4) and Na+/Ca2+ exchanger 1 (NCX1) and no high conductance connexin 43 (Cx43). Structural characterization of the right atrium (RA) revealed that the SAN was located at the earliest activation [i.e., at the junction of the superior vena cava (SVC) with the RA] and was surrounded by the paranodal-like tissue, extending down to the inferior vena cava (IVC). Emerged SAPs were localized close to the IVC and within the thick band of the atrial muscle known as the crista terminalis (CT). CONCLUSIONS: SAN ablation resulted in the generation of chronic SAP activity in 60% of treated animals. SAP displayed development over time and was located within the previously discovered PNA in humans, suggesting its role as dominant pacemaker in SND. Therefore, SAP in goat constitutes a promising stable target for electrophysiological modification to construct a fully functioning pacemaker.

6.
J Am Heart Assoc ; 9(20): e016590, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33059532

RESUMO

Background The sinus node (SN) is the primary pacemaker of the heart. SN myocytes possess distinctive action potential morphology with spontaneous diastolic depolarization because of a unique expression of ion channels and Ca2+-handling proteins. MicroRNAs (miRs) inhibit gene expression. The role of miRs in controlling the expression of genes responsible for human SN pacemaking and conduction has not been explored. The aim of this study was to determine miR expression profile of the human SN as compared with that of non-pacemaker atrial muscle. Methods and Results SN and atrial muscle biopsies were obtained from donor or post-mortem hearts (n=10), histology/immunolabeling were used to characterize the tissues, TaqMan Human MicroRNA Arrays were used to measure 754 miRs, Ingenuity Pathway Analysis was used to identify miRs controlling SN pacemaker gene expression. Eighteen miRs were significantly more and 48 significantly less abundant in the SN than atrial muscle. The most interesting miR was miR-486-3p predicted to inhibit expression of pacemaking channels: HCN1 (hyperpolarization-activated cyclic nucleotide-gated 1), HCN4, voltage-gated calcium channel (Cav)1.3, and Cav3.1. A luciferase reporter gene assay confirmed that miR-486-3p can control HCN4 expression via its 3' untranslated region. In ex vivo SN preparations, transfection with miR-486-3p reduced the beating rate by ≈35±5% (P<0.05) and HCN4 expression (P<0.05). Conclusions The human SN possesses a unique pattern of expression of miRs predicted to target functionally important genes. miR-486-3p has an important role in SN pacemaker activity by targeting HCN4, making it a potential target for therapeutic treatment of SN disease such as sinus tachycardia.


Assuntos
Frequência Cardíaca/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , MicroRNAs/genética , Proteínas Musculares/genética , Canais de Potássio/genética , Nó Sinoatrial , Potenciais de Ação/genética , Animais , Canais de Cálcio/genética , Perfilação da Expressão Gênica , Humanos , Pequeno RNA não Traduzido/genética , Ratos , Nó Sinoatrial/patologia , Nó Sinoatrial/fisiologia
7.
Sci Rep ; 10(1): 11279, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647133

RESUMO

Bradyarrhythmias are an important cause of mortality in heart failure and previous studies indicate a mechanistic role for electrical remodelling of the key pacemaking ion channel HCN4 in this process. Here we show that, in a mouse model of heart failure in which there is sinus bradycardia, there is upregulation of a microRNA (miR-370-3p), downregulation of the pacemaker ion channel, HCN4, and downregulation of the corresponding ionic current, If, in the sinus node. In vitro, exogenous miR-370-3p inhibits HCN4 mRNA and causes downregulation of HCN4 protein, downregulation of If, and bradycardia in the isolated sinus node. In vivo, intraperitoneal injection of an antimiR to miR-370-3p into heart failure mice silences miR-370-3p and restores HCN4 mRNA and protein and If in the sinus node and blunts the sinus bradycardia. In addition, it partially restores ventricular function and reduces mortality. This represents a novel approach to heart failure treatment.


Assuntos
Inativação Gênica , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , MicroRNAs/metabolismo , Nó Sinoatrial/fisiopatologia , Animais , Sítios de Ligação , Peso Corporal , Cardiomegalia , Biologia Computacional , Regulação para Baixo , Fibrose , Insuficiência Cardíaca/metabolismo , Frequência Cardíaca , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Ratos
8.
Front Physiol ; 10: 826, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31338036

RESUMO

Cardiovascular complications are common in type 1 diabetes mellitus (TIDM) and there is an increased risk of arrhythmias as a result of dysfunction of the cardiac conduction system (CCS). We have previously shown that, in vivo, there is a decrease in the heart rate and prolongation of the QRS complex in streptozotocin-induced type 1 diabetic rats indicating dysfunction of the CCS. The aim of this study was to investigate the function of the ex vivo CCS and key proteins that are involved in pacemaker mechanisms in TIDM. RR interval, PR interval and QRS complex duration were significantly increased in diabetic rats. The beating rate of the isolated sinoatrial node (SAN) preparation was significantly decreased in diabetic rats. The funny current density and cell capacitance were significantly decreased in diabetic nodal cells. Western blot showed that proteins involved in the function of the CCS were significantly decreased in diabetic rats, namely: HCN4, Cav1.3, Cav3.1, Cx45, and NCX1 in the SAN; RyR2 and NCX1 in the atrioventricular junction and Cx40, Cx43, Cx45, and RyR2 in the Purkinje network. We conclude that there are complex functional and cellular changes in the CCS in TIDM. The changes in the proteins involved in the function of this electrical system are expected to adversely affect action potential generation and propagation, and these changes are likely to be arrhythmogenic.

9.
Histol Histopathol ; 34(11): 1255-1268, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30968943

RESUMO

BACKGROUND: Functional properties of the sinoatrial node (SAN) are known to differ between sexes. Women have higher resting and intrinsic heart rates. Sex determines the risk of developing certain arrhythmias such as sick sinus syndrome, which occur more often in women. We believe that a major contributor to these differences is in gender specific ion channel expression. METHODS: qPCR was used to compare ion channel gene expression in the SAN and right atrium (RA) between male and female rats. Histology, immunohistochemistry and signal intensity analysis were used to locate the SAN and determine abundance of ion channels. The effect of nifedipine on extracellular potential recording was used to determine differences in beating rate between sexes. RESULTS: mRNAs for Cav1.3, Kir3.1, and Nkx2-5, as well as expression of the L-Type Ca²âº channel protein, were higher in the female SAN. Females had significantly higher intrinsic heart rates and the effect of nifedipine on isolated SAN preparations was significantly greater in male SAN. Computer modelling using a SAN cell model demonstrated a higher propensity of pacemaker-related arrhythmias in females. CONCLUSION: This study has identified key differences in the expression of Cav1.3, Kir3.1 and Nkx2-5 at mRNA and/or protein levels between male and female SAN. Cav1.3 plays an important role in the pacemaker function of the SAN, therefore the higher intrinsic heart rate of the female SAN could be caused by the higher expression of Cav1.3. The differences identified in this study advance our understanding of sex differences in cardiac electrophysiology and arrhythmias.


Assuntos
Canais Iônicos , Marca-Passo Artificial/efeitos adversos , Nó Sinoatrial/metabolismo , Animais , Arritmias Cardíacas , Canais de Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Simulação por Computador , Feminino , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Identidade de Gênero , Proteína Homeobox Nkx-2.5/metabolismo , Canais Iônicos/análise , Canais Iônicos/metabolismo , Masculino , Nifedipino/farmacologia , Ratos
10.
Europace ; 21(6): 981-989, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30753421

RESUMO

AIMS: Action potential duration (APD) alternans is an established precursor or arrhythmia and sudden cardiac death. Important differences in fundamental electrophysiological properties relevant to arrhythmia exist between experimental models and the diseased in vivo human heart. To investigate mechanisms of APD alternans using a novel approach combining intact heart and cellular cardiac electrophysiology in human in vivo. METHODS AND RESULTS: We developed a novel approach combining intact heart electrophysiological mapping during cardiac surgery with rapid on-site data analysis to guide myocardial biopsies for laboratory analysis, thereby linking repolarization dynamics observed at the organ level with underlying ion channel expression. Alternans-susceptible and alternans-resistant regions were identified by an incremental pacing protocol. Biopsies from these sites (n = 13) demonstrated greater RNA expression in Calsequestrin (CSQN) and Ryanodine (RyR) and ion channels underlying IK1 and Ito at alternans-susceptible sites. Electrical restitution properties (n = 7) showed no difference between alternans-susceptible and resistant sites, whereas spatial gradients of repolarization were greater in alternans-susceptible than in alternans-resistant sites (P = 0.001). The degree of histological fibrosis between alternans-susceptible and resistant sites was equivalent. Mathematical modelling of these changes indicated that both CSQN and RyR up-regulation are key determinants of APD alternans. CONCLUSION: Combined intact heart and cellular electrophysiology show that regions of myocardium in the in vivo human heart exhibiting APD alternans are associated with greater expression of CSQN and RyR and show no difference in restitution properties compared to non-alternans regions. In silico modelling identifies up-regulation and interaction of CSQN with RyR as a major mechanism underlying APD alternans.


Assuntos
Arritmias Cardíacas/fisiopatologia , Técnicas Eletrofisiológicas Cardíacas , Sistema de Condução Cardíaco/fisiopatologia , Potenciais de Ação , Biópsia , Calsequestrina/metabolismo , Feminino , Humanos , Canais Iônicos/metabolismo , Masculino , Pessoa de Meia-Idade , Rianodina/metabolismo
11.
Heart Rhythm ; 15(5): 752-760, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29288034

RESUMO

BACKGROUND: Aging is associated with an increased incidence of atrioventricular nodal (AVN) dysfunction. OBJECTIVE: The aim of this study was to investigate the structural and functional remodeling in the atrioventricular junction (AVJ) with aging. METHODS: Electrophysiology, histology, and immunohistochemistry experiments on male Wistar Hannover rats aged 3 months (n = 24) and 2 years (n = 15) were performed. Atrio-His (AH) interval, Wenkebach cycle length (WBCL), and AVN effective refractory period (AVNERP) were measured. Cesium (2 mM) was used to block hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, while ryanodine (2 µM) was used to block ryanodine 2 (RyR2) channels. Protein expression from different regions of the AVJ was studied using immunofluorescence. The expression of connexins (connexin 43 and connexin 40), ion channels (Hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4), voltage sensitive sodium channel (Nav1.5), and L-Type calcium channel (Cav1.3)), and calcium handling proteins (RyR2 and sarco/endoplasmic reticulum calcium ATPaset type 2a (SERCA2a)) were measured. Morphological characteristics were studied with histology. RESULTS: Without drugs to block HCN and RyR2 channels, there was prolongation of the AH interval, WBCL, and AVNERP (P < .05) with aging. In young rats only, cesium prolonged the AH interval, WBCL, and AVNERP (P < .01). Ryanodine prolonged the AH interval and WBCL (P < .01) in both young and old rats. Immunofluorescence revealed that with aging, connexin 43, HCN4, Nav1.5, and RyR2 downregulate in the regions of the AVJ and connexin 40, SERCA2a, and Cav1.3 upregulate (P < .05). Aging results in cellular hypertrophy, loosely packed cells, a decrease in the number of nuclei, and an increase in collagen content. CONCLUSION: Heterogeneous ion channel expression changes were observed in the AVJ with aging. For the first time, we have shown that HCN and RyR2 play an important role in AVN dysfunction with aging.


Assuntos
Envelhecimento , Nó Atrioventricular/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Rianodina/farmacologia , Animais , Nó Atrioventricular/citologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/efeitos dos fármacos , Imuno-Histoquímica , Masculino , Modelos Animais , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos
12.
Artigo em Inglês | MEDLINE | ID: mdl-27979911

RESUMO

BACKGROUND: Heart block is associated with pulmonary hypertension, and the aim of the study was to test the hypothesis that the heart block is the result of a change in the ion channel transcriptome of the atrioventricular (AV) node. METHODS AND RESULTS: The most commonly used animal model of pulmonary hypertension, the monocrotaline-injected rat, was used. The functional consequences of monocrotaline injection were determined by echocardiography, ECG recording, and electrophysiological experiments on the Langendorff-perfused heart and isolated AV node. The ion channel transcriptome was measured by quantitative PCR, and biophysically detailed computer modeling was used to explore the changes observed. After monocrotaline injection, echocardiography revealed the pattern of pulmonary artery blood flow characteristic of pulmonary hypertension and right-sided hypertrophy and failure; the Langendorff-perfused heart and isolated AV node revealed dysfunction of the AV node (eg, 50% incidence of heart block in isolated AV node); and quantitative PCR revealed a widespread downregulation of ion channel and related genes in the AV node (eg, >50% downregulation of Cav1.2/3 and HCN1/2/4 channels). Computer modeling predicted that the changes in the transcriptome if translated into protein and function would result in heart block. CONCLUSIONS: Pulmonary hypertension results in a derangement of the ion channel transcriptome in the AV node, and this is the likely cause of AV node dysfunction in this disease.


Assuntos
Nó Atrioventricular/metabolismo , Bloqueio Cardíaco/metabolismo , Hipertensão Pulmonar/metabolismo , Canais Iônicos/metabolismo , Transcriptoma , Animais , Nó Atrioventricular/fisiopatologia , Modelos Animais de Doenças , Regulação para Baixo , Ecocardiografia , Eletrocardiografia , Técnicas Eletrofisiológicas Cardíacas , Bloqueio Cardíaco/etiologia , Bloqueio Cardíaco/fisiopatologia , Hipertensão Pulmonar/complicações , Hipertensão Pulmonar/fisiopatologia , Canais Iônicos/genética , Masculino , Monocrotalina , Reação em Cadeia da Polimerase , Ratos , Ratos Wistar
13.
PLoS One ; 10(10): e0141452, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26509807

RESUMO

Heart failure is a major killer worldwide. Atrioventricular conduction block is common in heart failure; it is associated with worse outcomes and can lead to syncope and bradycardic death. We examine the effect of heart failure on anatomical and ion channel remodelling in the rabbit atrioventricular junction (AVJ). Heart failure was induced in New Zealand rabbits by disruption of the aortic valve and banding of the abdominal aorta resulting in volume and pressure overload. Laser micro-dissection and real-time polymerase chain reaction (RT-PCR) were employed to investigate the effects of heart failure on ion channel remodelling in four regions of the rabbit AVJ and in septal tissues. Investigation of the AVJ anatomy was performed using micro-computed tomography (micro-CT). Heart failure animals developed first degree heart block. Heart failure caused ventricular myocardial volume increase with a 35% elongation of the AVJ. There was downregulation of HCN1 and Cx43 mRNA transcripts across all regions and downregulation of Cav1.3 in the transitional tissue. Cx40 mRNA was significantly downregulated in the atrial septum and AVJ tissues but not in the ventricular septum. mRNA abundance for ANP, CLCN2 and Navß1 was increased with heart failure; Nav1.1 was increased in the inferior nodal extension/compact node area. Heart failure in the rabbit leads to prolongation of the PR interval and this is accompanied by downregulation of HCN1, Cav1.3, Cx40 and Cx43 mRNAs and anatomical enlargement of the entire heart and AVJ.


Assuntos
Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Canais Iônicos/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Animais , Remodelamento Atrial , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Conexina 43/metabolismo , Modelos Animais de Doenças , Ecocardiografia , Eletrocardiografia , Insuficiência Cardíaca/diagnóstico , Masculino , RNA Mensageiro/genética , Coelhos , Remodelação Ventricular , Microtomografia por Raio-X
14.
Artigo em Inglês | MEDLINE | ID: mdl-26736194

RESUMO

This study used one-dimensional computer simulation to investigate the influence of heart failure on action potential conduction through the left Purkinje fibres to the left ventricle. The study was based on a rabbit model of left ventricular heart failure caused by volume and pressure overload. To simulate the effect of heart failure, we began with models of the healthy rabbit Purkinje fibre action potential and healthy left ventricular (endocardial) action potential. In the absence of ionic current measurements from failing rabbit Purkinje fibres, we assumed that changes in ionic currents mirrored changes in ion channel expression (measured at the messenger RNA level): ionic conductances were adjusted based on changes in expression of the relevant ion channels. Ionic currents in the left ventricle were adjusted in the same way, but in addition, changes in ionic currents measured in the failing rabbit left ventricle by Ruijter et al. and Powizd et al. were used in simulations. The simulations predict a gradient in action potential duration from the Purkinje fibres to the ventricle and this gradient is exacerbated in heart failure. The predicted changes in the Purkinje fibre and left ventricular action potential were compared to actual changes measured using sharp microelectrodes.


Assuntos
Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/fisiopatologia , Ramos Subendocárdicos , Função Ventricular/fisiologia , Animais , Simulação por Computador , Modelos Cardiovasculares , Ramos Subendocárdicos/fisiologia , Ramos Subendocárdicos/fisiopatologia , Coelhos
15.
Prog Biophys Mol Biol ; 115(2-3): 252-60, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24972083

RESUMO

Understanding the mechanisms of fatal ventricular arrhythmias is of great importance. In view of the many electrophysiological differences that exist between animal species and humans, the acquisition of basic electrophysiological data in the intact human heart is essential to drive and complement experimental work in animal and in-silico models. Over the years techniques have been developed to obtain basic electrophysiological signals directly from the patients by incorporating these measurements into routine clinical procedures which access the heart such as cardiac catheterisation and cardiac surgery. Early recordings with monophasic action potentials provided valuable information including normal values for the in vivo human heart, cycle length dependent properties, the effect of ischaemia, autonomic nervous system activity, and mechano-electric interaction. Transmural recordings addressed the controversial issue of the mid myocardial "M" cell. More recently, the technique of multielectrode mapping (256 electrodes) developed in animal models has been extended to humans, enabling mapping of activation and repolarisation on the entire left and right ventricular epicardium in patients during cardiac surgery. Studies have examined the issue of whether ventricular fibrillation was driven by a "mother" rotor with inhomogeneous and fragmented conduction as in some animal models, or by multiple wavelets as in other animal studies; results showed that both mechanisms are operative in humans. The simpler spatial organisation of human VF has important implications for treatment and prevention. To link in-vivo human electrophysiological mapping with cellular biophysics, multielectrode mapping is now being combined with myocardial biopsies. This technique enables region-specific electrophysiology changes to be related to underlying cellular biology, for example: APD alternans, which is a precursor of VF and sudden death. The mechanism is incompletely understood but related to calcium cycling and APD restitution. Multielectrode sock mapping during incremental pacing enables epicardial sites to be identified which exhibit marked APD alternans and sites where APD alternans is absent. Whole heart electrophysiology is assessed by activation repolarisation mapping and analysis is performed immediately on-site in order to guide biopsies to specific myocardial sites. Samples are analysed for ion channel expression, Ca(2+)-handling proteins, gap junctions and extracellular matrix. This new comprehensive approach to bridge cellular and whole heart electrophysiology allowed to identify 20 significant changes in mRNA for ion channels Ca(2+)-handling proteins, a gap junction channel, a Na(+)-K(+) pump subunit and receptors (particularly Kir 2.1) between the positive and negative alternans sites.


Assuntos
Mapeamento Potencial de Superfície Corporal/métodos , Sistema de Condução Cardíaco/fisiopatologia , Ventrículos do Coração/fisiopatologia , Modelos Cardiovasculares , Miócitos Cardíacos/fisiologia , Fibrilação Ventricular/fisiopatologia , Mapeamento Potencial de Superfície Corporal/tendências , Simulação por Computador , Previsões , Sistema de Condução Cardíaco/patologia , Ventrículos do Coração/patologia , Miócitos Cardíacos/citologia , Fibrilação Ventricular/patologia
16.
Nat Commun ; 5: 3775, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24825544

RESUMO

Endurance athletes exhibit sinus bradycardia, that is a slow resting heart rate, associated with a higher incidence of sinus node (pacemaker) disease and electronic pacemaker implantation. Here we show that training-induced bradycardia is not a consequence of changes in the activity of the autonomic nervous system but is caused by intrinsic electrophysiological changes in the sinus node. We demonstrate that training-induced bradycardia persists after blockade of the autonomous nervous system in vivo in mice and in vitro in the denervated sinus node. We also show that a widespread remodelling of pacemaker ion channels, notably a downregulation of HCN4 and the corresponding ionic current, If. Block of If abolishes the difference in heart rate between trained and sedentary animals in vivo and in vitro. We further observe training-induced downregulation of Tbx3 and upregulation of NRSF and miR-1 (transcriptional regulators) that explains the downregulation of HCN4. Our findings provide a molecular explanation for the potentially pathological heart rate adaptation to exercise training.


Assuntos
Bradicardia/genética , Frequência Cardíaca/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Condicionamento Físico Animal , RNA Mensageiro/metabolismo , Nó Sinoatrial/metabolismo , Adaptação Fisiológica/genética , Animais , Bradicardia/metabolismo , Regulação para Baixo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Técnicas In Vitro , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Ratos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Regulação para Cima
17.
Heart Fail Rev ; 19(1): 65-74, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23430124

RESUMO

Heart failure in chronic type 2 diabetes mellitus is partly attributable to adverse structural remodelling of the left ventricle (LV), but the contribution of hyperglycaemia (HG) per se in remodelling processes is debated. In this study, we examined the molecular signature of LV remodelling in 18-month-old spontaneously diabetic male Goto-Kakizaki (GK) rats that represent a long-term mildly diabetic phenotype, using histological, immunoblotting and quantitative gene expression approaches. Relative to age-matched Wistar controls, mildly diabetic GK rats presented with LV hypertrophy, increased expression of natriuretic peptides and phosphorylation of pro-hypertrophic Akt. Fibrosis proliferation in the GK LV paralleled increased transcriptional and biologically active pro-fibrogenic transforming growth factor-ß1 (TGFß1) in the LV with upregulated mRNA abundance for key extracellular matrix (ECM) components such as fibronectin, collagen type(s) 1 and 3α and regulators including matrix metalloproteinases 2 and 9, and their tissue inhibitor (TIMP) 4, connexin 43 and α5-integrin. GK rats also presented with altered mRNA expression for cardiac sarcoplasmic reticulum Ca(2+)ATPase, Na(+)/Ca(2+) exchanger and the L-type Ca(2+) channels which may contribute to the altered Ca(2+) transient kinetics previously observed in this model at 18 months of age (t test, p < 0.05 vs. age-matched Wistar control for all parameters). The results indicate that chronic mild HG can produce the molecular and structural correlates of a hypertrophic myopathy. Diffuse ECM proliferation in this model is possibly a product of HG-induced TGFß1 upregulation and altered transcriptional profile of the ECM.


Assuntos
Diabetes Mellitus Tipo 2/genética , Regulação da Expressão Gênica , Hiperglicemia/genética , Ativação Transcricional , Fator de Crescimento Transformador beta1/genética , Disfunção Ventricular Esquerda/genética , Remodelação Ventricular , Animais , Doença Crônica , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Seguimentos , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Humanos , Hiperglicemia/metabolismo , Hiperglicemia/fisiopatologia , Imuno-Histoquímica , Masculino , RNA Mensageiro/genética , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Índice de Gravidade de Doença , Fatores de Tempo , Fator de Crescimento Transformador beta1/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia , Função Ventricular Esquerda/fisiologia
18.
Histol Histopathol ; 29(7): 891-902, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24368587

RESUMO

Heart failure (HF) causes dysfunction of the atrioventricular node (AVN) - first or second-degree heart block is a risk factor for sudden cardiac death in HF patients. The aim of the study was to determine if HF causes remodelling of the AVN and right atrioventricular ring (RAVR). HF was induced in rats (n=4) by ligation of the proximal left coronary artery, which resulted in a large infarct of the left ventricle. Sham-operated rats (n=4) were used as controls. Eight weeks after surgery, functional experiments were performed and the hearts were frozen. The body weight of HF rats was similar to control rats, but the mean heart weight of HF rats was significantly enlarged. In HF rats compared to controls, the left ventricle was dilated, left ventricular end-diastolic pressure elevated (21.0 ± 0.6 and 5.4 ± 0.2 mm Hg), left ventricular ejection fraction reduced (0.2 ± 0.02 and 0.5 ± 0.02) and left ventricular end-systolic pressure reduced (102 ± 4.2 and 127 ± 3.1 mm Hg). In HF rats, the in vivo and in vitro PR intervals were increased (41% and 20%), as was the Wenckebach cycle length, indicative of AVN dysfunction. The collagen content was significantly increased in the AVN and RAVR indicating fibrosis. Immunolabelling of caveolin3 (cell membrane marker) showed that there was hypertrophy in HF (cell diameter was increased by 63%, 39% in AVN, RAVR). The TUNEL assay showed that the myocytes of the AVN and RAVR in HF undergo apoptotic cell death. Immunolabelling showed that expression of HCN4 was significantly decreased in the AVN and RAVR (43% and 47%) in HF. We conclude that in HF there is remodelling of the AVN and RAVR and this remodelling may explain the AVN dysfunction.


Assuntos
Nó Atrioventricular/patologia , Nó Atrioventricular/fisiopatologia , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Animais , Modelos Animais de Doenças , Insuficiência Cardíaca/etiologia , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Masculino , Isquemia Miocárdica/complicações , Ratos , Ratos Sprague-Dawley
19.
J Am Heart Assoc ; 2(6): e000246, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24356527

RESUMO

BACKGROUND: The cardiac conduction system consists of the sinus node, nodal extensions, atrioventricular (AV) node, penetrating bundle, bundle branches, and Purkinje fibers. Node-like AV ring tissue also exists at the AV junctions, and the right and left rings unite at the retroaortic node. The study aims were to (1) construct a 3-dimensional anatomical model of the AV rings and retroaortic node, (2) map electrical activation in the right ring and study its action potential characteristics, and (3) examine gene expression in the right ring and retroaortic node. METHODS AND RESULTS: Three-dimensional reconstruction (based on magnetic resonance imaging, histology, and immunohistochemistry) showed the extent and organization of the specialized tissues (eg, how the AV rings form the right and left nodal extensions into the AV node). Multiextracellular electrode array and microelectrode mapping of isolated right ring preparations revealed robust spontaneous activity with characteristic diastolic depolarization. Using laser microdissection gene expression measured at the mRNA level (using quantitative PCR) and protein level (using immunohistochemistry and Western blotting) showed that the right ring and retroaortic node, like the sinus node and AV node but, unlike ventricular muscle, had statistically significant higher expression of key transcription factors (including Tbx3, Msx2, and Id2) and ion channels (including HCN4, Cav3.1, Cav3.2, Kv1.5, SK1, Kir3.1, and Kir3.4) and lower expression of other key ion channels (Nav1.5 and Kir2.1). CONCLUSIONS: The AV rings and retroaortic node possess gene expression profiles similar to that of the AV node. Ion channel expression and electrophysiological recordings show the AV rings could act as ectopic pacemakers and a source of atrial tachycardia.


Assuntos
Sistema de Condução Cardíaco/metabolismo , Potenciais de Ação/fisiologia , Animais , Nó Atrioventricular/anatomia & histologia , Nó Atrioventricular/metabolismo , Nó Atrioventricular/fisiologia , Fascículo Atrioventricular/anatomia & histologia , Fascículo Atrioventricular/metabolismo , Fascículo Atrioventricular/fisiologia , Sistema de Condução Cardíaco/anatomia & histologia , Sistema de Condução Cardíaco/fisiologia , Modelos Anatômicos , Proteoma , Ramos Subendocárdicos/anatomia & histologia , Ramos Subendocárdicos/metabolismo , Ramos Subendocárdicos/fisiologia , Ratos , Nó Sinoatrial/anatomia & histologia , Nó Sinoatrial/metabolismo , Nó Sinoatrial/fisiologia , Transcriptoma
20.
Pharmacol Ther ; 139(2): 260-88, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23612425

RESUMO

It is now over 100years since the discovery of the cardiac conduction system, consisting of three main parts, the sinus node, the atrioventricular node and the His-Purkinje system. The system is vital for the initiation and coordination of the heartbeat. Over the last decade, immense strides have been made in our understanding of the cardiac conduction system and these recent developments are reviewed here. It has been shown that the system has a unique embryological origin, distinct from that of the working myocardium, and is more extensive than originally thought with additional structures: atrioventricular rings, a third node (so called retroaortic node) and pulmonary and aortic sleeves. It has been shown that the expression of ion channels, intracellular Ca(2+)-handling proteins and gap junction channels in the system is specialised (different from that in the ordinary working myocardium), but appropriate to explain the functioning of the system, although there is continued debate concerning the ionic basis of pacemaking. We are beginning to understand the mechanisms (fibrosis and remodelling of ion channels and related proteins) responsible for dysfunction of the system (bradycardia, heart block and bundle branch block) associated with atrial fibrillation and heart failure and even athletic training. Equally, we are beginning to appreciate how naturally occurring mutations in ion channels cause congenital cardiac conduction system dysfunction. Finally, current therapies, the status of a new therapeutic strategy (use of a specific heart rate lowering drug) and a potential new therapeutic strategy (biopacemaking) are reviewed.


Assuntos
Sistema de Condução Cardíaco/fisiologia , Animais , Desenvolvimento Embrionário , Sistema de Condução Cardíaco/anatomia & histologia , Sistema de Condução Cardíaco/embriologia , Humanos , Canais Iônicos/genética , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...