Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microsyst Nanoeng ; 10: 45, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560726

RESUMO

Silicon nanostructures with unique Mie resonances have garnered considerable attention in the field of nanophotonics. Here, we present a simple and efficient method for the fabrication of silicon (Si) nanoparticle substrates using continuous-wave (CW) laser annealing. The resulting silicon nanoparticles exhibit Mie resonances in the visible region, and their resonant wavelengths can be precisely controlled. Notably, laser-annealed silicon nanoparticle substrates show a 60-fold enhancement in fluorescence. This tunable and fluorescence-enhancing silicon nanoparticle platform has tremendous potential for highly sensitive fluorescence sensing and biomedical imaging applications.

2.
Analyst ; 148(24): 6241-6247, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37947037

RESUMO

The formation of photosynthetic microbial biofilms comprising multispecies biomolecules, such as extracellular polymeric substances (EPSs), and microbial cells play pivotal roles in maintaining or stimulating their biological functions. Although there are numerous studies on photosynthetic microbial biofilms, the spatial distribution of EPS components that are vital for microbial biofilm formation, such as exopolysaccharides and proteins, is not well understood. Visualization of photosynthetic microbial biofilms requires label-free methods, because labelling EPSs results in structural changes or aggregation. Raman spectroscopy is useful for label-free visualization of biofilm constituents based on chemical contrast. However, interference resulting from the bright autofluorescence of photosynthetic molecules and the low detection efficiency of Raman scattering make visualization a challenge. Herein, we visualized photosynthetic microbial biofilms in a label-free manner using a super-resolution optical infrared absorption imaging technique, called mid-infrared photothermal (MIP) microscopy. By leveraging the advantages of MIP microscopy, such as its sub-micrometer spatial resolution, autofluorescence-free features, and high detection sensitivity, the distribution of cyanobacteria and their extracellular polysaccharides in the biofilm matrix were successfully visualized. This showed that cyanobacterial cells were aligned along acidic/sulfated polysaccharides in the extracellular environment. Furthermore, spectroscopic analyses elucidated that during formation of biofilms, sulfated polysaccharides initially form linear structures followed by entrapment of cyanobacterial cells. The present study provides the foundation for further studies on the formation, structure, and biological functions of microbial biofilms.


Assuntos
Biofilmes , Cianobactérias , Polissacarídeos , Microscopia , Imagem Óptica
3.
Sci Rep ; 13(1): 14541, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752134

RESUMO

Rapid, sensitive detection of biomolecules is important for biosensing of infectious pathogens as well as biomarkers and pollutants. For example, biosensing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still strongly required for the fight against coronavirus disease 2019 (COVID-19) pandemic. Here, we aim to achieve the rapid and sensitive detection of SARS-CoV-2 nucleocapsid protein antigen by enhancing the performance of optical biosensing based on optical frequency combs (OFC). The virus-concentration-dependent optical spectrum shift produced by antigen-antibody interactions is transformed into a photonic radio-frequency (RF) shift by a frequency conversion between the optical and RF regions in the OFC, facilitating rapid and sensitive detection with well-established electrical frequency measurements. Furthermore, active-dummy temperature-drift compensation with a dual-comb configuration enables the very small change in the virus-concentration-dependent signal to be extracted from the large, variable background signal caused by temperature disturbance. The achieved performance of dual-comb biosensing will greatly enhance the applicability of biosensors to viruses, biomarkers, environmental hormones, and so on.


Assuntos
Técnicas Biossensoriais , COVID-19 , Vírus , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Teste para COVID-19 , Antígenos Virais
4.
Sci Rep ; 13(1): 15655, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730798

RESUMO

Herein, we integrated angle-scanning surface plasmon resonance (SPR) and angle-fixed SPR as a hybrid angular-interrogation SPR to enhance the sensing performance. Galvanometer-mirror-based beam angle scanning achieves a 100-Hz acquisition rate of both the angular SPR reflectance spectrum and the angle-fixed SPR reflectance, whereas the use of near-infrared light enhances the refractive index (RI) sensitivity, range, and precision compared with visible light. Simultaneous measurement of the angular SPR reflectance spectrum and angle-fixed SPR reflectance boosts the RI change range, RI resolution, and RI accuracy to 10-1-10-6 RIU, 2.24 × 10-6 RIU, and 5.22 × 10-6 RIU, respectively. The proposed hybrid SPR is a powerful tool for wide-dynamic-range RI sensing with various applications.

5.
Analyst ; 148(6): 1285-1290, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36811918

RESUMO

Single-cell analysis by means of vibrational spectroscopy combined with optical trapping is a reliable platform for unveiling cell-to-cell heterogeneities in vast populations. Although infrared (IR) vibrational spectroscopy provides rich molecular fingerprint information on biological samples in a label-free manner, its application with optical trapping has never been achieved due to weak gradient forces generated by the diffraction-limited focused IR beam and strong background of water absorption. Herein, we present single-cell IR vibrational analysis that incorporates mid-infrared photothermal (MIP) microscopy with optical trapping. Optically trapped single polymer particles and red blood cells (RBCs) in blood could be chemically identified owing to their IR vibrational fingerprints. This single-cell IR vibrational analysis further allowed us to probe the chemical heterogeneities of RBCs originating from the variation in the intracellular characteristics. Our demonstration paves the way for the IR vibrational analysis of single cells and chemical characterization in various fields.


Assuntos
Microscopia , Pinças Ópticas , Microscopia/métodos , Espectrofotometria Infravermelho/métodos , Polímeros , Análise de Célula Única
6.
Anal Sci ; 38(12): 1497-1503, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36070070

RESUMO

Visualizing the spatial distribution of chemical compositions in biological tissues is of great importance to study fundamental biological processes and origin of diseases. Raman microscopy, one of the label-free vibrational imaging techniques, has been employed for chemical characterization of tissues. However, the low sensitivity of Raman spectroscopy often requires a long acquisition time of Raman measurement or a high laser power, or both, which prevents one from investigating large-area tissues in a nondestructive manner. In this work, we demonstrated chemical imaging of heart tissues using mid-infrared photothermal (MIP) microscopy that simultaneously achieves the high sensitivity benefited from IR absorption of molecules and the high spatial resolution down to a few micrometers. We successfully visualized the distributions of different biomolecules, including proteins, phosphate-including proteins, and lipids/carbohydrates/amino acids. Further, we experimentally compared MIP microscopy with Raman microscopy to evaluate the sensitivity and photodamage to tissues. We proved that MIP microscopy is a highly sensitive technique for obtaining vibrational information of molecules in a broad fingerprint region, thereby it could be employed for biological and diagnostic applications, such as live-tissue imaging.


Assuntos
Microscopia , Análise Espectral Raman , Microscopia/métodos , Análise Espectral Raman/métodos , Vibração , Proteínas , Lasers
7.
Sci Adv ; 8(28): eabo4021, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857514

RESUMO

Optical nanoimaging techniques, such as tip-enhanced Raman spectroscopy (TERS), are nowadays indispensable for chemical and optical characterization in the entire field of nanotechnology and have been extensively used for various applications, such as visualization of nanoscale defects in two-dimensional (2D) materials. However, it is still challenging to investigate micrometer-sized sample with nanoscale spatial resolution because of severe limitation of measurement time due to drift of the experimental system. Here, we achieved long-duration TERS imaging of a micrometer-sized WS2 sample for 6 hours in a reproducible manner. Our ultrastable TERS system enabled to reveal the defect density on the surface of tungsten disulfide layers in large area equivalent to the device scale. It also helped us to detect rare defect-related optical signals from the sample. The present study paves ways to evaluate nanoscale defects of 2D materials in large area and to unveil remarkable optical and chemical properties of large-sized nanostructured materials.

8.
ACS Omega ; 7(5): 4286-4292, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35155921

RESUMO

Surface coating of plasmonic nanoparticles is of huge importance to suppress fluorescence quenching in plasmon-enhanced fluorescence sensing. Herein, a one-pot method for synthesizing polymer-coated silver nanoparticles was developed using a functional polymer conjugated with disulfide-containing anchoring groups. The disulfides played a crucial role in covalently bonding polymers to the surface of the silver nanoparticles. The covalent bond enabled the polymer layer to form a long-term stable coating on the silver nanoparticles. The polymer layer coated was adequately thin to efficiently achieve plasmonic enhancement of fluorescence and also thick enough to effectively suppress quenching of fluorescence, achieving a huge net enhancement of fluorescence. The polymer-coated plasmonic nanoparticles are a promising platform for demonstrating highly sensitive biosensing for medical diagnostics.

9.
Sci Rep ; 12(1): 1060, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058513

RESUMO

The COVID-19 pandemic has created urgent demand for rapid detection of the SARS-CoV-2 coronavirus. Herein, we report highly sensitive detection of SARS-CoV-2 nucleocapsid protein (N protein) using nanoparticle-enhanced surface plasmon resonance (SPR) techniques. A crucial plasmonic role in significantly enhancing the limit of detection (LOD) is revealed for exceptionally large gold nanoparticles (AuNPs) with diameters of hundreds of nm. SPR enhanced by these large nanoparticles lowered the LOD of SARS-CoV-2 N protein to 85 fM, resulting in the highest SPR detection sensitivity ever obtained for SARS-CoV-2 N protein.


Assuntos
Proteínas do Nucleocapsídeo de Coronavírus , Ouro/química , Nanopartículas Metálicas/química , SARS-CoV-2/química , Ressonância de Plasmônio de Superfície , Proteínas do Nucleocapsídeo de Coronavírus/análise , Proteínas do Nucleocapsídeo de Coronavírus/química , Fosfoproteínas/análise , Fosfoproteínas/química
10.
Commun Biol ; 4(1): 551, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976349

RESUMO

Elongated tubular endosomes play essential roles in diverse cellular functions. Multiple molecules have been implicated in tubulation of recycling endosomes, but the mechanism of endosomal tubule biogenesis has remained unclear. In this study, we found that JRAB/MICAL-L2 induces endosomal tubulation via activated Rab8A. In association with Rab8A, JRAB/MICAL-L2 adopts its closed form, which functions in the tubulation of recycling endosomes. Moreover, JRAB/MICAL-L2 induces liquid-liquid phase separation, initiating the formation of tubular recycling endosomes upon overexpression. Between its N-terminal and C-terminal globular domains, JRAB/MICAL-L2 contains an intrinsically disordered region, which contributes to the formation of JRAB/MICAL-L2 condensates. Based on our findings, we propose that JRAB/MICAL-L2 plays two sequential roles in the biogenesis of tubular recycling endosomes: first, JRAB/MICAL-L2 organizes phase separation, and then the closed form of JRAB/MICAL-L2 formed by interaction with Rab8A promotes endosomal tubulation.


Assuntos
Endossomos/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas do Citoesqueleto/metabolismo , Endocitose/fisiologia , Endossomos/fisiologia , Células HEK293 , Células HeLa , Humanos , Proteínas dos Microfilamentos/fisiologia , Ligação Proteica/fisiologia , Transporte Proteico/fisiologia , Junções Íntimas/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/fisiologia
11.
Biophys Chem ; 260: 106338, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32213381

RESUMO

Selective binding of aqueous-phase amino acids to mineral surfaces is regarded as a plausible first step in oligopeptide formation on early Earth. To clarify the strength and underlying mechanism of amino acid binding to pyrite surfaces, we measured the unbinding (pull-off) force of ten amino acids and two oligo-peptides from water-pyrite interfaces using atomic force microscopy (AFM). The most probable unbinding force could be described by a linearly increasing function with the size of the amino acid and a characteristic offset. A good correlation was obtained between the most probable unbinding force and the residue volume, surface area and polarizability of samples suggesting at least a partial contribution of van der Waals (vdW) forces, especially the London dispersion force. These results are useful in analysis of adhesion phenomena of amino acids in the given environmental settings such as in this work.


Assuntos
Aminoácidos/química , Ferro/química , Minerais/química , Peptídeos/química , Sulfetos/química , Água/química , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
12.
Phys Chem Chem Phys ; 21(10): 5435-5447, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30793143

RESUMO

The tendency of glycine to form polymer chains on a rutile(110) surface under wet/dry conditions (dry-wet cycles at high temperature) is studied through a conjunction of surface sensitive experimental techniques and sequential periodic multilevel calculations that mimics the experimental procedures with models of decreasing complexity and increasing accuracy. X-ray photoemission spectroscopy (XPS) and thermal desorption spectroscopy (TDS) experimentally confirmed that the dry-wet cycles lead to Gly polymerization on the oxide support. This was supported by all the theoretical characterizations. First, classical reactive molecular dynamics (MD) simulations based on the ReaxFF approach were used to reproduce the adsorption of the experimental glycine solution droplets sprayed onto an oxide support and to identify the most probable arrangement of the molecules that triggered the polymerization mechanisms. Then, quantum chemistry density functional tight binding (DF-TB) MDs and static density functional theory (DFT) calculations were carried out to further explore favorable configurations and to evaluate the energy barriers of the most promising reaction pathways for the peptide bond-formation reactions. The results confirmed the fundamental role played by the substrate to thermodynamically and kinetically favor the process and disclosed its main function as an immobilizing agent: the molecules accommodated in the surface channels close to each other were the ones starting the key events of the dimerization process and the most favorable mechanism was the one where a water molecule acted as a proton exchange mediator in the condensation process.


Assuntos
Glicina , Prebióticos , Titânio , Catálise , Glicina/química , Simulação de Dinâmica Molecular , Oxirredução , Polimerização , Titânio/química , Água/química
13.
Int J Mol Sci ; 19(2)2018 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-29370126

RESUMO

The interaction strength of progressively longer oligomers of glycine, (Gly), di-Gly, tri-Gly, and penta-Gly, with a natural pyrite surface was directly measured using the force mode of an atomic force microscope (AFM). In recent years, selective activation of abiotically formed amino acids on mineral surfaces, especially that of pyrite, has been proposed as an important step in many origins of life scenarios. To investigate such notions, we used AFM-based force measurements to probe possible non-covalent interactions between pyrite and amino acids, starting from the simplest amino acid, Gly. Although Gly itself interacted with the pyrite surface only weakly, progressively larger unbinding forces and binding frequencies were obtained using oligomers from di-Gly to penta-Gly. In addition to an expected increase of the configurational entropy and size-dependent van der Waals force, the increasing number of polar peptide bonds, among others, may be responsible for this observation. The effect of chain length was also investigated by performing similar experiments using l-lysine vs. poly-l-lysine (PLL), and l-glutamic acid vs. poly-l-glutamic acid. The results suggest that longer oligomers/polymers of amino acids can be preferentially adsorbed on pyrite surfaces.


Assuntos
Dipeptídeos/química , Glicina/química , Ferro/química , Prebióticos , Sulfetos/química , Microscopia de Força Atômica
14.
Nano Converg ; 4(1): 38, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29264108

RESUMO

Surface force analysis with atomic force microscope (AFM) in which a single amino acid residue was mounted on the tip apex of AFM probe was carried out for the first time at the molecular level on titanium dioxide (TiO2) as a representative mineral surface for prebiotic chemical evolution reactions. The force analyses on surfaces with three different crystal orientations revealed that the TiO2 (110) surface has unique characteristics for adsorbing glycine molecules showing different features compared to those on TiO2 (001) and (100). To examine this difference, we investigated thermal desorption spectroscopy (TDS) and the interaction between the PEG cross-linker and the three TiO2 surfaces. Our data suggest that the different single crystal surfaces would provide different chemical evolution field for amino acid molecules.

15.
Nanoscale ; 9(30): 10715-10720, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28681893

RESUMO

We report a method to establish experimental conditions for tip-enhanced Raman spectroscopy (TERS) with low thermal and mechanical damage to samples. In this method, we monitor the thermal desorption of thiol molecules from a gold-coated probe of an atomic force microscope (AFM) via TERS spectra. Temperatures for desorption of thiol molecules (60-100 °C) from gold surfaces cover the temperature range for degradation of heat-sensitive biomaterials (e.g. proteins). By monitoring the desorption of the thiols on the probe, we can estimate the power of an excitation laser for the samples to reach their critical temperatures for thermal degradation. Furthermore, we also found that an active oscillation of AFM cantilevers significantly promotes the heat transfer from the probe to the surrounding medium. This enables us to employ a higher power density of the excitation laser, resulting in a stronger Raman signal compared with the signal obtained with a contact mode. We propose that this combinatory method is effective in acquiring strong TERS signals while suppressing thermal and mechanical damage to soft and heat-sensitive samples.

16.
Anal Sci ; 33(7): 853-858, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28690265

RESUMO

Local crystalline structures of LiCoO2 nanothin film cathodes in a lithium ion battery have been spectroscopically elucidated through confocal Raman imaging analysis at high spatial resolution of several hundred nanometers. A significant difference in the crystalline structure is found between the nanometric thin films and bulk powders. Thermally induced local decomposition of LiCoO2 into an impurity phase on the films has also been revealed along with the mechanism of the temperature-triggered decomposition process. Moreover, frequency-based Raman imaging enables us to locally probe spatial separation between stoichiometric (LiCoO2) and non-stoichiometric (Li1-xCoO2, 0 < x < 1) crystal phases on the thin films. Such local crystalline analysis is a promising approach to provide new insights into the degradation mechanism of lithium-ion batteries, which would result in improving the performance of thin film-based lithium ion batteries.

17.
Opt Express ; 25(1): 431-439, 2017 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-28085837

RESUMO

We perform a comprehensive numerical analysis on the optical binding forces of a multiple-resonant silicon nanodimer induced by the normal illumination of a plane wave in the visible region. The silicon nanodimer provides either repulsive or attractive forces in water while providing only attractive forces in air. The enhancement of the magnetic dipole mode is attributed to the generation of repulsive forces. The sign (attractive/repulsive) and the amplitude of the optical forces are controlled by incident polarization and separation distance between the silicon nanoparticles. These optomechanical effects demonstrate a key step toward the optical sorting and assembly of silicon nanoparticles.

18.
J Biophotonics ; 10(2): 294-302, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27135779

RESUMO

The cyclic RGD (cRGD) peptide ligands of cells have become widely used for treating several cancers. We report a highly sensitive analysis of c(RGDfC) using surface enhanced Raman spectroscopy (SERS) using single dimer nanogap antennas in aqueous environment. Good agreement between characteristic peaks of the SERS and the Raman spectra of bulk c(RGDfC) with its peptide's constituents were observed. The exhibited blinking of the SERS spectra and synchronization of intensity fluctuations, suggest that the SERS spectra acquired from single dimer nanogap antennas was dominated by the spectrum of single to a few molecules. SERS spectra of c(RGDfC) could be used to detect at the nanoscale, the cells' transmembrane proteins binding to its ligand. SERS of cyclic RGD on nanogap antenna.


Assuntos
Nanotecnologia , Peptídeos Cíclicos/química , Análise Espectral Raman , Ligantes
19.
J Phys Chem Lett ; 7(22): 4648-4654, 2016 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-27804299

RESUMO

We have investigated the strong coupling interaction between excitons of CdSe quantum dots (QDs) and surface plasmon polaritons (SPPs) of gold nanohole array by steady-state spectroscopic method and transient absorption measurements. Numerical and experimental steady-state measurements demonstrate that the SPP-QD system can indeed undergo strong coupling, characterized by a Rabi splitting up to 220 meV. In particular, it is found that in the transient absorption spectra, under resonant excitation, the 1S transition bleaching band from uncoupled CdSe QDs is completely separated into two distinctive bleaching bands, remarkably fingerprinting the hybrid SPP-QD state. It was also found that the lifetime of these hybrid bands is just slightly shorter than the lifetime of bare CdSe QDs, possibly caused by the phonon bottleneck effect due to the large Rabi splitting. These results could open a new avenue toward the development of novel nanoplasmon devices with strong SPP-QD interaction.

20.
Appl Spectrosc ; 70(7): 1239-43, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27412187

RESUMO

Laser-scanning-assisted tip-enhanced optical microscopy was developed for robust optical nanospectroscopy. The laser-scanning system was utilized to automatically set and keep the center of a tight laser-focusing spot in the proximity of a metallic tip with around 10 nm precision. This enabled us to efficiently and stably induce plasmon-coupled field enhancement at the apex of the metallic probe tip. The laser-scanning technique was also applied to tracking and compensating the thermal drift of the metallic tip in the spot. This technique is usable for long-term tip-enhanced optical spectroscopy without any optical degradation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...