Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bone Rep ; 14: 101061, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33898659

RESUMO

Combination therapy of active vitamin D3 with some bisphosphonates (BPs) has been reported to be clinically beneficial. However, combination therapy of eldecalcitol (ELD) with BP has to date not been validated as to whether it is beneficial in the clinical setting. Preclinical studies suggested that simultaneous treatment with ELD and some BPs is more effective than monotherapy. However, the relative potency of various BPs, when used in combination with ELD, is completely unknown. In this study, we examined and compared the effects of risedronate (RIS), alendronate (ALN), and minodronate (MIN) alone or in combination with ELD on bone mass, microarchitecture, strength, and material properties in ovariectomized Sprague-Dawley rats aged 13 weeks. RIS, ALN, MIN, and ELD were administered five times weekly for 16 weeks. Micro-computed tomography analysis, compression test, and Fourier transform infrared (FTIR) imaging analysis were performed 16 weeks after treatment initiation. Trabecular and cortical bone mineral density (BMD) in the fourth lumbar vertebra (L4) significantly increased in the RIS + ELD, ALN + ELD, and MIN + ELD groups compared with the vehicle group. Moreover, the bone microarchitecture of L4 in all the BP + ELD groups also significantly improved. On mechanical testing of L4, the maximum load was significantly increased in the RIS + ELD and ALN + ELD groups. FTIR analysis revealed that the mineral-to-collagen ratio of trabecular bone in L3 of all the BP + ELD groups was significantly increased compared with the vehicle group. By contrast, the carbonate-to-phosphate ratio, a parameter of mineral immaturity, was significantly decreased in the RIS + ELD and ALN + ELD groups. BP + ELD improved the BMD and structural properties of the bone to a similar extent. RIS + ELD and ALN + ELD also improved bone strength. Furthermore, treatment with BP + ELD improved the bone material. These results suggest that the combination therapy of BP and ELD is beneficial and warrants further clinical trials.

2.
Neurogastroenterol Motil ; 30(12): e13448, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30129138

RESUMO

BACKGROUND: Chronic constipation affects 14%-17% of the population. Elobixibat, a novel, ileal bile acid transporter (IBAT) inhibitor, has been approved as a new chronic constipation drug in Japan in January 2018. The present study aimed to examine the pharmacological effects of elobixibat on colonic motility in conscious dogs using a telemetry system. METHODS: Six male beagle dogs were surgically implanted with strain gauge force transducers for gastrointestinal (GI) motility recording. The motility index was calculated from GI motility at each recording site in conscious and nonrestraint dogs. The fasted dogs were orally administered elobixibat (3, 10, or 30 mg kg-1 ) or 30 mg kg-1 of sennoside as positive control or vehicle using a crossover design and washout period of more than 6 days. One hour after drug administration, the dogs were fed chow, and GI motility and defecation were observed for 10 hours; GI motility was quantified to calculate giant migrating contractions (GMCs). Fecal bile acids (BAs) were determined as well. KEY RESULTS: Elobixibat and sennoside significantly increased the number of defecations, fecal wet weight, and water content within 10 hours after administration. Elobixibat dose-dependently decreased the time to first bowel movement, increased the amount of total fecal BAs, and rapidly induced mild GMCs during defecation; however, higher strength of GMCs was observed with sennoside. CONCLUSIONS & INFERENCE: Elobixibat induces bowel movements faster than sennoside through a different mechanism. Elobixibat locally inhibits IBAT in the ileal lumen, leading to elevated fecal BAs in the colon and induced mild GMCs during defecation.


Assuntos
Defecação/efeitos dos fármacos , Dipeptídeos/farmacologia , Fármacos Gastrointestinais/farmacologia , Complexo Mioelétrico Migratório/efeitos dos fármacos , Tiazepinas/farmacologia , Animais , Estado de Consciência , Cães , Íleo/efeitos dos fármacos , Masculino , Transportadores de Ânions Orgânicos Dependentes de Sódio/antagonistas & inibidores , Simportadores/antagonistas & inibidores
3.
Calcif Tissue Int ; 101(1): 102-110, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28337514

RESUMO

Teriparatide (TPTD), a recombinant human parathyroid hormone N-terminal fragment (1-34), is a widely used bone anabolic drug for osteoporosis. Sequential treatment with antiresorptives such as bisphosphonates after TPTD discontinuation is generally recommended. However, relative effects of bisphosphonates have not been determined. In the present study, we directly compared effects of risedronate (RIS) and alendronate (ALN) on bone mineral density (BMD), bone turnover, structural property and strength in ovariectomized (OVX) rats, when administered after TPTD. Female Sprague Dawley rats were divided into one sham-operated and eight ovariectomized groups. TPTD, RIS, and ALN were given subcutaneously twice per week for 4 or 8 weeks after 4 week treatment with TPTD. TPTD significantly increased BMD (+9.6%) in OVX rats after 4 weeks of treatment. 8 weeks after TPTD withdrawal, vehicle-treated group showed a blunted BMD increase of +8.4% from the baseline. In contrast, 8 weeks of treatment with RIS and ALN significantly increased BMD to 17.4 and 21.8%, respectively. While ALN caused a consistently larger increase in BMD, sequential treatment with RIS resulted in lower Tb.Sp compared to ALN in the fourth lumbar vertebra as well as in greater stiffness in compression test. In conclusion, the present study demonstrated that sequential therapy with ALN and RIS after TPTD both improved bone mass and structure. Our results further suggest that RIS may have a greater effect on improving bone quality and stiffness than ALN despite less prominent effect on BMD. Further studies are necessary to determine clinical relevance of these findings to fracture rate.


Assuntos
Alendronato/farmacologia , Conservadores da Densidade Óssea/farmacologia , Osso e Ossos/efeitos dos fármacos , Ácido Risedrônico/farmacologia , Teriparatida/farmacologia , Animais , Densidade Óssea , Difosfonatos/farmacologia , Feminino , Ovariectomia , Ratos , Ratos Sprague-Dawley
4.
J Bone Miner Metab ; 32(6): 653-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24357144

RESUMO

Clinical evidence suggests that, compared with alendronate, risedronate reduces fracture risk faster and more potently, with less bone mass gain. We tested the hypothesis that risedronate improves bone quality faster than alendronate using calcium-deficient, ovariectomized (OVX) rats. Female Sprague-Dawley rats at 24 weeks of age were divided into sham-operated and OVX groups and fed a low-calcium (0.05%) diet under paired feeding. After 12 weeks, OVX rats were divided into five groups and treated with vehicle, risedronate (3.5 and 17.5 µg/kg/week, s.c.) or alendronate (7 and 35 µg/kg/week, s.c.). Rats were killed 6-8 weeks later and the bone architecture and strength of the left femur were evaluated by micro-computed tomography and a three-point bending test. Trabecular bone mineral density (BMD), number and thickness were significantly lower in OVX rats than in the sham-operated group. Cortical BMD, bone area (Ct.Ar), and thickness (Ct.Th) were similarly decreased. Risedronate significantly improved Ct.Ar (+8%) and Ct.Th (+9%) at 6 weeks, while alendronate only caused a significant improvement in Ct.Ar (+8% at 6 weeks) and only at the higher dose. At 8 weeks, both risedronate and alendronate significantly increased trabecular BMD compared with the vehicle. Bone strength parameters showed a significant correlation between Ct.Ar and Ct.Th. Risedronate significantly improved maximum load at 6 weeks, while alendronate failed to produce any significant changes. Our results suggest that risedronate is superior to alendronate at improving cortical bone architecture and strength, and that enhanced bone quality partly accounts for risedronate's efficacy.


Assuntos
Alendronato/farmacologia , Conservadores da Densidade Óssea/farmacologia , Densidade Óssea/efeitos dos fármacos , Ácido Etidrônico/análogos & derivados , Animais , Cálcio/deficiência , Cálcio/farmacologia , Ácido Etidrônico/farmacologia , Feminino , Alimentos Formulados , Fraturas Ósseas/tratamento farmacológico , Fraturas Ósseas/metabolismo , Fraturas Ósseas/patologia , Ovariectomia , Ratos , Ratos Sprague-Dawley , Ácido Risedrônico , Suporte de Carga
5.
Biofouling ; 25(2): 95-8, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19021017

RESUMO

In this laboratory study, the ability of low-power pulsed laser irradiation to kill planktonic organisms in a flowing water system was examined, thus, to test the possibility of using this technique as a water treatment strategy to reduce biofouling growth in condenser tubes of power plants and to reduce bioinvasion via the ballast water of ships. Two flow rates (4.6 and 9.0 l h(-1)) were tested on three planktonic organisms: two marine centric diatoms viz. Skeletonema costatum and Chaetoceros gracilis and a dinoflagellate, Heterocapsa circularisquama. A low-power pulsed laser irradiation at 532 nm with a fluence of 0.1 J cm(-2) from a frequency-doubled Nd:YAG laser was used as the irradiation source. The laser irradiation resulted in a heavy mortality of the test cells. The mortality observed was >90% for S. costatum and H. circularisqama and >70% for C. gracilis. The results suggest that laser irradiation has the potential to act as a water treatment strategy to reduce biofouling of condenser tubes in power plants as well as to reduce species invasion via the ballast water of ships.


Assuntos
Lasers , Plâncton/fisiologia , Plâncton/efeitos da radiação , Ecossistema , Biologia Marinha , Plâncton/classificação , Navios
6.
Appl Environ Microbiol ; 70(11): 6905-8, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15528562

RESUMO

We studied the efficiency of pulsed low-power laser irradiation of 532 nm from an Nd:YAG (neodymium-doped yttrium-aluminum-garnet) laser to remove marine biofilm developed on titanium and glass coupons. Natural biofilms with thicknesses of 79.4 +/- 27.8 microm (titanium) and 107.4 +/- 28.5 microm (glass) were completely disrupted by 30 s of laser irradiation (fluence, 0.1 J/cm2). Laser irradiation significantly reduced the number of diatoms and bacteria in the biofilm (paired t test; P < 0.05). The removal was better on titanium than on glass coupons.


Assuntos
Biofilmes/efeitos da radiação , Diatomáceas/efeitos da radiação , Lasers , Neodímio , Pseudoalteromonas/efeitos da radiação , Ítrio , Alumínio , Biofilmes/crescimento & desenvolvimento , Diatomáceas/crescimento & desenvolvimento , Relação Dose-Resposta à Radiação , Vidro , Pseudoalteromonas/crescimento & desenvolvimento , Doses de Radiação , Água do Mar/microbiologia , Titânio
7.
Biotechnol Bioeng ; 86(7): 729-36, 2004 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-15162448

RESUMO

We studied the laser ablation of laboratory-developed biofilm on titanium and glass surfaces. Specifically, Pseudoalteromonas carrageenovora, a marine biofilm forming bacterium was used to generate laboratory biofilm. Two fluences, 0.05 and 0.1 J/cm(2) and three durations of irradiation, 30 s, 5 min, and 10 min were tested using an Nd;YAG laser of 532 nm wavelength (in the green light area). Nonirradiated coupons with biofilm served as control. The biofilm removal efficiency increased with the increase in laser fluence and duration of irradiation. The maximum biofilm area cover on control coupons of glass and titanium was 62.5 and 76.0%, respectively. Upon irradiation with fluence 0.1 J/cm(2) for the very short duration of 30 s, this reduced to 5.6 and 12.4% and at 10 min to 2.17 and 0.7% on glass and titanium coupons, respectively, while the controls did not show any reductions (62.5 and 76.0% respectively, for glass and titanium coupons). The biofilm TRC (Total Resuscitated Cells) reduction during this period was even more prominent than the area cover, indicating that the remaining biofilm portions on coupons after irradiation were largely composed of dead bacterial cells. The TRC in the irradiation chamber medium for short durations of irradiation showed a significant increase, indicating that the laser irradiation removed live bacteria from the biofilm. The re-growth of the resuscitated cells showed they could grow like the control cells but with a significant lag. The laser's efficiency in the removal of biofilm was better seen on titanium coupons than on glass. Our results showed that a low-power pulsed laser irradiation could be used to remove biofilm formed on hard surfaces.


Assuntos
Biofilmes/efeitos da radiação , Lasers , Vidro/química , Vidro/efeitos da radiação , Microscopia de Força Atômica , Platina/química , Platina/efeitos da radiação , Pseudoalteromonas/efeitos da radiação
8.
Biotechnol Bioeng ; 85(2): 185-9, 2004 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-14705001

RESUMO

The recolonization of laser-ablated bacterial monoculture biofilm was studied in the laboratory by using a flow-cytometer system. The marine biofilm-forming bacterium Pseudoalteromonas carrageenovora was used to develop biofilms on titanium coupons. Upon exposure to a low-power pulsed irradiation from an Nd:YAG laser, the coupons with biofilm were significantly reduced both in terms of total viable count (TVC) and area cover. The energy density used for a pulse of 5 ns was 0.1 J/cm(2) and the durations of irradiation exposure were 5 and 10 min. When placed in a flow of dilute ZoBell marine broth medium (10%) the laser-destructed bacterial film in a flow-cytometer showed significant recovery over a period of time. The flow of medium was regulated at 3.2 ml/min. The increase in area cover and TVC, however, was significantly less than that observed for nonirradiated control (t-test, P< 0.05). The coupons were observed for biofilm area cover and TVC at different intervals (3, 6, and 9 h) after irradiation. While the biofilm in the control coupon at the end of 9 h of exposure showed 95.6 +/- 4.1% cover, the 5- and 10-min irradiated samples after 9 h showed 60.3 +/- 6.5 and 37.4 +/- 12.1% area cover, respectively. The reduced rate of recolonization compared to control was thought be due to the lethal and sublethal impacts of laser irradiation on bacteria. This observation thus provided data on the online recolonization speed of biofilm, which is important when considering pulsed laser irradiation as an ablating technique of biofilm formation and removal in natural systems.


Assuntos
Biofilmes/crescimento & desenvolvimento , Biofilmes/efeitos da radiação , Lasers , Pseudomonas/crescimento & desenvolvimento , Pseudomonas/efeitos da radiação , Esterilização/métodos , Divisão Celular/fisiologia , Divisão Celular/efeitos da radiação , Relação Dose-Resposta à Radiação , Pseudomonas/citologia
9.
Biofouling ; 19(2): 109-14, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-14618694

RESUMO

The mechanisms of laser action on bacteria are not adequately understood. Here, an attempt has been made to study the fluctuation in ATP (adenosine triphosphate) concentration following laser irradiation from a pulsed Nd:YAG laser on a marine biofilm-forming bacterium Pseudoalteromonas carrageenovora. A stationary phase bacterial suspension (density 10(7-8) ml-1) was exposed to pulsed laser irradiations at a fluence of 0.1 J cm-2 (pulse width 5 ns, repetition rate 10 Hz) for different durations, ranging from 2 s to 15 min. The total viable count (TVC) and ATP concentration of the irradiated samples were determined immediately after the laser irradiation. While the maximum reduction in the TVC observed with respect to the control was 59% immediately after 15 min irradiation, the ATP concentration showed a reduction of about 86% for the same duration. The ATP concentration showed an abrupt reduction from 3 min of laser irradiation and continued to reduce significantly with increasing duration of irradiation. Thus, 3 min irradiation at a fluence of 0.1 J cm-2 is considered as an approximate threshold for ATP production in this bacterium. As the decreased level of ATP production continued, bacterial mortality resulted. The reduction in ATP production could be due to damage caused by the laser irradiations on bacterial metabolic processes such as cellular respiration.


Assuntos
Trifosfato de Adenosina/química , Fenômenos Fisiológicos Bacterianos/efeitos da radiação , Biofilmes , Lasers , Pseudoalteromonas , Contagem de Colônia Microbiana , Fatores de Tempo
10.
Biofouling ; 19(2): 133-8, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-14618697

RESUMO

A flow cytometry system was used to evaluate the impact of pulsed laser irradiations from an Nd:YAG laser on two marine coastal water diatoms, Chaetoceros gracilis and Skeletonema costatum. Three flow speeds, i.e. 9, 18 and 27 ml min-1 and three laser fluences, i.e. 0.025, 0.05 and 0.1 J cm-2 pulse-1 were tested during this study. The reduction in cell density and chlorophyll a (chl a) concentrations were monitored by reference to non-irradiated samples as controls. Upon irradiation, the cell density and the chl a concentrations became reduced significantly compared to the control (one way ANOVA p < 0.001 for the cell density in both the species and p < 0.05 for chl a concentrations in both species). A maximum mortality of 0.77 log10 (about 83%) for C. gracilis and 0.68 log10 (about 78%) for S. costatum was observed at 9 ml min-1 flow speed and 0.1 J cm-2 laser fluence. The maximum reduction observed in the chl a concentration was about 26% (control 0.413 and sample 0.306 mg ml-1) for C. gracilis and 27% (control 0.222 and sample 0.16 mg ml-1) for S. costatum, when the flow rate was 9 ml min-1 and the fluence 0.1 J cm-2. In general, mortality increased with an increase in the laser fluence. The results thus show if the cooling water is laser-irradiated to mitigate biofouling, this could result in significant damage to the planktonic flora of the flowing seawater system, which in turn might reduce algal biofilm formation on industrially important structures. The reduction in the chl a concentration showed that the laser irradiations also could result in a significant reduction in the primary productivity of the cooling water.


Assuntos
Diatomáceas/fisiologia , Diatomáceas/efeitos da radiação , Citometria de Fluxo/métodos , Lasers , Análise de Variância , Clorofila/química , Clorofila A , Contagem de Colônia Microbiana , Indústrias , Japão , Água do Mar
11.
Biofouling ; 19(3): 169-76, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-14619285

RESUMO

Laboratory experiments were conducted to study the impact of laser irradiation on the larvae of the fouling barnacle Balanus amphitrite. Research pertaining to fouling invertebrate larvae-laser interaction is sparse and, hence, data on this aspect were thought significant in order to consider pulsed low power laser irradiations as a possible future antifouling tool. Lethal and sub-lethal impacts of four very low laser fluences, viz. 0.013, 0.025, 0.05 and 0.1 J cm-2 for three different durations, viz. 2, 10 and 30 s were investigated. Three growth stages of barnacle larvae, viz. nauplii stage II, nauplii stage IV and cyprids were exposed to the mentioned laser fluences for different durations. While lethal impact was assessed immediately after and 1 d after irradiation, sub-lethal impacts were studied by monitoring the success rate of the irradiated nauplii in reaching the cyprid stage. In addition, the swimming speed of VIth stage nauplii after irradiation was studied. In the case of cyprids, in addition to the mortality measurement immediately after and 1 d after irradiation, the settlement rate was investigated. In all the above experiments, non-irradiated larvae served as controls. The results showed an increase in mortality with increasing laser fluence and duration of irradiation. Irradiation for 2 s resulted in significant mortality in nauplii, while it was less in the case of cyprids. In IInd stage nauplii, the mortality immediately after irradiation for 2 s varied from 14.8 +/- 2.12 to 97.1 +/- 4.1% for laser fluences of 0.013 and 0.1 J cm-2, respectively. However, in cyprids, the mortality immediately after irradiation for 2 s varied from 12.2 +/- 3 to 13.4 +/- 1.2% for fluences of 0.013 and 0.1 J cm-2, respectively. The mortality in IVth stage nauplii was less than that for IInd stage nauplii but more than that for cyprids. There was a significant increase in mortality with time after irradiation. The formation of cyprids from the irradiated larvae was significantly less than that observed for non-irradiated larvae. Also, the irradiated larvae showed a significantly slower swimming speed compared to the control samples. The settlement rate in cyprids was reduced significantly by the laser irradiation. This was true even for the lowest fluence and shortest period of irradiation tested. Thus, the results of the experiment showed that even a low power pulsed laser irradiation of 0.013 J cm-2 for 2 s can cause significant damage to fouling barnacle larvae.


Assuntos
Lasers , Thoracica/crescimento & desenvolvimento , Thoracica/efeitos da radiação , Animais , Larva/efeitos da radiação , Água do Mar , Fatores de Tempo
12.
Water Res ; 37(10): 2311-6, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12727239

RESUMO

The ability of pulsed laser irradiations to cause damage on the biofouling organisms is recently being investigated. If this technique is employed in industries such as power generation wherein a large quantity of water is being used for the cooling purpose, many organisms other than the targeted would get affected. In this study, we have investigated the damage caused by the pulsed laser irradiations from an Nd:YAG laser (fluence 0.1J/cm(2)) for varying durations such as 2, 5, 10, 30, 60 and 300 s on two marine diatom species namely Skeletonema costatum and Chaetoceros gracilis. Upon exposure to low power laser irradiations, these diatom species showed mortalities between 52.6+/-9.3% to 97.7+/-3.1% in the case of S. costatum and 57.8+/-2.5% to 98.9+/-0.6% in the case of C. gracilis for 2 and 300 s of irradiations, respectively. The mortality increased with the increase in the duration of laser irradiation. The estimation of the chlorophyll a concentration in the irradiated samples showed a considerable reduction varying between 9.8% and 57% in C. gracilis and 3% and 70.3% in S. costatum for 2 and 300 s of irradiations, respectively. The laser-survived cells grew as the non-irradiated (control) samples. C. gracilis frustules were broken by the laser whilst, the cell materials were drained out of the frustules in the case of S. costatum. The study therefore showed that the low power pulsed laser irradiations could cause significant damage on the two species of planktonic diatoms.


Assuntos
Diatomáceas , Lasers , Controle de Pragas/métodos , Sobrevivência Celular , Clorofila/análise , Clorofila A , Centrais Elétricas , Microbiologia da Água , Abastecimento de Água
13.
Biotechnol Bioeng ; 82(4): 399-402, 2003 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-12632396

RESUMO

Impact by pulsed laser irradiations from an Nd:YAG laser on the marine biofilm-forming bacterium Pseudoalteromonas carrageenovora has been studied using a flow cytometric system. The biofilm-forming bacteria in the planktonic state have been irradiated while flowing, and the mortality and bacterial attachment have been determined by exposing TiN coupons in the system. Coupons suspended in the non-irradiated bacterial flow were treated as the control. The fluence used in the study was 0.1 J/cm(2). Three flow rates (14, 28, and 42 cm/min) and two exposure durations (15 and 30 min) were tested. The results showed the increase in bacterial mortality with the decrease in flow rate. The maximum mortality of 27.5% was observed when the flow rate was 14 cm/min. The bacterial attachment increased with the increase in flow rate and exposure duration. The area of bacterial attachment on the experimental coupons exposed to the irradiated sample was significantly lesser than that for the nonirradiated sample. The results thus show in a flowing system, low power pulsed laser irradiations could reduce the bacterial attachment even though it did not cause significant mortality.


Assuntos
Aderência Bacteriana/efeitos da radiação , Biofilmes/crescimento & desenvolvimento , Biofilmes/efeitos da radiação , Citometria de Fluxo/métodos , Lasers , Pseudoalteromonas/fisiologia , Pseudoalteromonas/efeitos da radiação , Biofilmes/classificação , Sobrevivência Celular/efeitos da radiação , Luz , Pseudoalteromonas/classificação , Pseudoalteromonas/citologia , Água do Mar , Especificidade da Espécie , Poluentes da Água/efeitos da radiação
14.
Biotechnol Bioeng ; 80(5): 552-8, 2002 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-12355466

RESUMO

The effect of low mean power laser irradiations with short pulse duration from an Nd:YAG (neodymium-doped yttrium aluminium garnet) laser on a marine biofilm-forming bacterium, Pseudoalteromonas carrageenovora, was investigated in the laboratory. Laser-irradiated bacteria were tested for their ability to attach on nontoxic titanium nitride (TiN) coupons with nonirradiated bacteria as the reference. Two durations of irradiation were tested, 10 and 15 min. Bacterial attachment was monitored after 20 min, 40 min, and 1 h of irradiation. The average laser fluence used for this study was 0.1 J/cm(2). The area of attachment of the irradiated bacteria was significantly less than the reference for both durations of irradiation. The growth of irradiated bacteria showed a longer lag phase than the nonirradiated sample, mainly due to mortality in the former. The bacterial mortality observed was 23.4 +/- 0.71 and 48.6 +/- 6.5% for 10- and 15-min irradiations, respectively. Thus, the results show that low-power pulsed laser irradiations resulted in a significant bacterial mortality and a reduced bacterial attachment on nontoxic hard surfaces.


Assuntos
Biofilmes/crescimento & desenvolvimento , Biofilmes/efeitos da radiação , Adesão Celular/efeitos da radiação , Lasers , Pseudoalteromonas/fisiologia , Pseudoalteromonas/efeitos da radiação , Adesão Celular/fisiologia , Células Cultivadas , Meios de Cultura , Relação Dose-Resposta à Radiação , Luz , Pseudoalteromonas/classificação , Valores de Referência , Sensibilidade e Especificidade , Especificidade da Espécie , Titânio , Microbiologia da Água
15.
Can J Microbiol ; 48(4): 326-32, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12030705

RESUMO

The impact of pulsed Nd:YAG (neodymium-doped yttrium/aluminium garnet) laser irradiation on the marine biofilm-forming bacteria Pseudoalteromonas carrageenovora during two growth stages (log phase and stationary phase) and under two stresses (reduced temperature and nutrient limitation) was investigated. Bacteria were exposed to a laser fluence of 0.1 J x cm(-2) for 5, 10, and 15 min with a peak power of 20 MW x cm(-2), a pulse width of 5 ns, and an average power of 1 W x cm(-2) with a repetition rate of 10 Hz. The mortality of bacteria immediately after the irradiation as well as after a set period of time was determined. Mortality was higher among log-phase bacteria (72%) than bacteria in the stationary phase (51%) and those grown under nutrient limitation (51%). Bacteria grown at reduced temperature had a mortality of 49%. However, the differences in cell density of log-phase, stationary-phase, nutrient-limited, and low-temperature irradiated samples compared with controls after 5 h of incubation were 96, 93, 94, and 86%, respectively. The mortality values suggest that the same laser fluence has different degrees of effectiveness, depending on the physiological state of the bacteria.


Assuntos
Biofilmes/efeitos dos fármacos , Lasers , Pseudoalteromonas/fisiologia , Pseudoalteromonas/efeitos da radiação , Biofilmes/crescimento & desenvolvimento , Divisão Celular/efeitos da radiação , Relação Dose-Resposta à Radiação , Temperatura Alta , Doses de Radiação , Ítrio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...