Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 75(10): 2809-2818, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38373194

RESUMO

The impact of rising global temperatures on crop yields is a serious concern, and the development of heat-resistant crop varieties is crucial for mitigating the effects of climate change on agriculture. To achieve this, a better understanding of the molecular basis of the thermal responses of plants is necessary. The circadian clock plays a central role in modulating plant biology in synchrony with environmental changes, including temperature fluctuations. Recent studies have uncovered the role of transcriptional activators of the core circadian network in plant temperature responses. This expert view highlights key novel findings regarding the role of the RVE and LNK gene families in controlling gene expression patterns and plant growth under different temperature conditions, ranging from regular diurnal oscillations to extreme stress temperatures. These findings reinforce the essential role of the circadian clock in plant adaptation to changing temperatures and provide a basis for future studies on crop improvement.


Assuntos
Relógios Circadianos , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Temperatura , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fenômenos Fisiológicos Vegetais
2.
Cells ; 12(20)2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37887291

RESUMO

Light is both the main source of energy and a key environmental signal for plants. It regulates not only gene expression but also the tightly related processes of splicing and alternative splicing (AS). Two main pathways have been proposed to link light sensing with the splicing machinery. One occurs through a photosynthesis-related signal, and the other is mediated by photosensory proteins, such as red light-sensing phytochromes. Here, we evaluated the relative contribution of each of these pathways by performing a transcriptome-wide analysis of light regulation of AS in plants that do not express any functional phytochrome (phyQ). We found that an acute 2-h red-light pulse in the middle of the night induces changes in the splicing patterns of 483 genes in wild-type plants. Approximately 30% of these genes also showed strong light regulation of splicing patterns in phyQ mutant plants, revealing that phytochromes are important but not essential for the regulation of AS by R light. We then performed a meta-analysis of related transcriptomic datasets and found that different light regulatory pathways can have overlapping targets in terms of AS regulation. All the evidence suggests that AS is regulated simultaneously by various light signaling pathways, and the relative contribution of each pathway is highly dependent on the plant developmental stage.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/genética , Arabidopsis/metabolismo , Fitocromo/genética , Fitocromo/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Processamento Alternativo/genética , Splicing de RNA , Plantas/metabolismo
3.
Front Plant Sci ; 10: 1076, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31552074

RESUMO

Seed dormancy and germination are relevant processes for a successful seedling establishment in the field. Light is one of the most important environmental factors involved in the relief of dormancy to promote seed germination. In Arabidopsis thaliana seeds, phytochrome photoreceptors tightly regulate gene expression at different levels. The contribution of alternative splicing (AS) regulation in the photocontrol of seed germination is still unknown. The aim of this work is to study gene expression modulated by light during germination of A. thaliana seeds, with focus on AS changes. Hence, we evaluated transcriptome-wide changes in stratified seeds irradiated with a pulse of red (Rp) or far-red (FRp) by RNA sequencing (RNA-seq). Our results show that the Rp changes the expression of ∼20% of the transcriptome and modifies the AS pattern of 226 genes associated with mRNA processing, RNA splicing, and mRNA metabolic processes. We further confirmed these effects for some of the affected AS events. Interestingly, the reverse transcriptase-polymerase chain reaction (RT-PCR) analyses show that the Rp modulates the AS of splicing-related factors (At-SR30, At-RS31a, At-RS31, and At-U2AF65A), a light-signaling component (At-PIF6), and a dormancy-related gene (At-DRM1). Furthermore, while the phytochrome B (phyB) is responsible for the AS pattern changes of At-U2AF65A and At-PIF6, the regulation of the other AS events is independent of this photoreceptor. We conclude that (i) Rp triggers AS changes in some splicing factors, light-signaling components, and dormancy/germination regulators; (ii) phyB modulates only some of these AS events; and (iii) AS events are regulated by R and FR light, but this regulation is not directly associated with the intensity of germination response. These data will help in boosting research in the splicing field and our understanding about the role of this mechanism during the photocontrol of seed germination.

4.
Front Plant Sci ; 10: 1019, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31456814

RESUMO

Because of their sessile nature, plants have adopted varied strategies for growing and reproducing in an ever-changing environment. Control of mRNA levels and pre-mRNA alternative splicing are key regulatory layers that contribute to adjust and synchronize plant growth and development with environmental changes. Transcription and alternative splicing are thought to be tightly linked and coordinated, at least in part, through a network of transcriptional and splicing regulatory factors that interact with the carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II. One of the proteins that has been shown to play such a role in yeast and mammals is pre-mRNA-PROCESSING PROTEIN 40 (PRP40, also known as CA150, or TCERG1). In plants, members of the PRP40 family have been identified and shown to interact with the CTD of RNA Pol II, but their biological functions remain unknown. Here, we studied the role of AtPRP40C, in Arabidopsis thaliana growth, development and stress tolerance, as well as its impact on the global regulation of gene expression programs. We found that the prp40c knockout mutants display a late-flowering phenotype under long day conditions, associated with minor alterations in red light signaling. An RNA-seq based transcriptome analysis revealed differentially expressed genes related to biotic stress responses and also differentially expressed as well as differentially spliced genes associated with abiotic stress responses. Indeed, the characterization of stress responses in prp40c mutants revealed an increased sensitivity to salt stress and an enhanced tolerance to Pseudomonas syringae pv. maculicola (Psm) infections. This constitutes the most thorough analysis of the transcriptome of a prp40 mutant in any organism, as well as the first characterization of the molecular and physiological roles of a member of the PRP40 protein family in plants. Our results suggest that PRP40C is an important factor linking the regulation of gene expression programs to the modulation of plant growth, development, and stress responses.

5.
Genes (Basel) ; 10(1)2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30577529

RESUMO

Light signaling pathways interact with the circadian clock to help organisms synchronize physiological and developmental processes to periodic environmental cycles. The plant photoreceptors responsible for clock resetting have been characterized, but signaling components that link the photoreceptors to the clock remain to be identified. Members of the family of NIGHT LIGHT⁻INDUCIBLE AND CLOCK-REGULATED (LNK) genes play key roles linking light regulation of gene expression to the control of daily and seasonal rhythms in Arabidopsis thaliana. Particularly, LNK1 and LNK2 were shown to control circadian rhythms, photomorphogenic responses, and photoperiod-dependent flowering time. Here we analyze the role of the four members of the LNK family in Arabidopsis in these processes. We found that depletion of the closely related LNK3 and LNK4 in a lnk1;lnk2 mutant background affects circadian rhythms, but not other clock-regulated processes such as flowering time and seedling photomorphogenesis. Nevertheless, plants defective in all LNK genes (lnkQ quadruple mutants) display developmental alterations that lead to increased rosette size, biomass, and enhanced phototropic responses. Our work indicates that members of the LNK family have both distinctive and partially overlapping functions, and are an essential link to orchestrate light-regulated developmental processes.

6.
Plant Physiol ; 133(4): 1617-29, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14645734

RESUMO

Plants respond to the proximity of neighboring vegetation by elongating to prevent shading. Red-depleted light reflected from neighboring vegetation triggers a shade avoidance response leading to a dramatic change in plant architecture. These changes in light quality are detected by the phytochrome family of photoreceptors. We analyzed global changes in gene expression over time in wild-type, phyB mutant, and phyA phyB double mutant seedlings of Arabidopsis in response to simulated shade. Using pattern fitting software, we identified 301 genes as shade responsive with patterns of expression corresponding to one of various physiological response modes. A requirement for a consistent pattern of expression across 12 chips in this way allowed more subtle changes in gene expression to be considered meaningful. A number of previously characterized genes involved in light and hormone signaling were identified as shade responsive, as well as several putative, novel shade-specific signal transduction factors. In addition, changes in expression of genes in a range of pathways associated with elongation growth and stress responses were observed. The majority of shade-responsive genes demonstrated antagonistic regulation by phyA and phyB in response to shade following the pattern of many physiological responses. An analysis of promoter elements of genes regulated in this way identified conserved promoter motifs potentially important in shade regulation.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Fototropismo/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Sequência de Bases , Escuridão , Genoma de Planta , Luz , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...