Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 235: 116671, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454804

RESUMO

The prime aim of this research is to discover new, eco-friendly approaches to reducing agents for manufacturing silver nanoparticles (AgNPs) from fresh fruiting bodies of the edible mushroom Hypsizygus ulmarius (Hu). The confirmation of Hu-mediated AgNPs has been characterized by UV visible spectroscopy, XRD, FTIR, SEM with EDX, HRTEM, AFM, PSA, Zeta poetical and GCMS analysis. The absorption peak of Hu-AgNPs at 430 nm has been confirmed by UV-visible spectroscopy analysis. The findings of the particle size study show that AgNPs have a size distribution with an average of 20 nm. The Zeta potential of NPs reveals a significant build-up of negative charges on their surface. The additional hydrate layers that occurred at the surface of AgNPs are shown in the HR-TEM morphology images. The antibacterial activity results showed that Hu-AgNPs were highly effective against both bacterial pathogens, with gram-positive (+) and gram-negative (-) pathogens having a moderate inhibition effect on K. pneumoniae (5.3 ± 0.3 mm), E. coli (5.3 ± 0.1), and S. aureus (5.2 ± 0.3 mm). Hu-AgNPs (IC50 of 50.78 µg/mL) were found to have dose-dependent cytotoxic action against human lung cancer cell lines (A549). Inhibited cell viability by up to 64.31% after 24 h of treatment. To the best of our knowledge, this is the hand information on the myco-synthesis of AgNPs from the H. ulmarius mushroom extract and the results suggest that it can an excellent source for developing a multipurpose and eco-friendly nano product in future.


Assuntos
Agaricales , Anti-Infecciosos , Nanopartículas Metálicas , Humanos , Prata/química , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Staphylococcus aureus , Escherichia coli , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Environ Res ; 232: 116319, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37271436

RESUMO

This current study aims to develop a unique biomaterial that can fight against oxidative stress and microbial infections without causing any harm. As a result, an easy-to-make, environment-friendly, long-lasting, and non-toxic copper oxide nanoparticle (CuONP) was synthesized using an edible mushroom Pleurotus citrinopileatus extract. The UV-vis spectroscopy analyses reflected a sharp absorbance peak at 250 nm. The FTIR, XRD, SEM, HR-TEM, and EDX instrumental tools were used to characterize the myco-produced CuONPs. The face-centred cubic (FCC) CuONPs were found to have diffraction peaks at the planes of (110), (002), (111), (112), (020), (202), (113), (310), (220), and (004). The HR-TEM result showed the particles had a spherical structure and an average nanoparticles size of 20 nm. The antimicrobial activity results expressed the broad spectrum of antibacterial effect and the better growth inhibition zone was recorded in P. aeruginosa (8.3 ± 0.1), E. coli (7.4 ± 0.3), K. pneumoniae (7.2 ± 0.1), S. aureus (7.1 ± 0.3), S. pneumoniae (6.3 ± 0.2), and B. cereus (6.2 ± 0.3 mm). The cytotoxicity efficacy of myco-synthesized CuONPs tested against a cancer cell line (HT-29) observed the best result in low doses of mushroom extract (45.62 µg/mL). Based on the outcome of the study suggests that the mycosynthesized CuONPs using Pleurotus mushroom extract might serve as an alternative agent for biomedical applications in the near future.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Pleurotus , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Staphylococcus aureus , Escherichia coli , Cobre/química , Nanopartículas/química , Antibacterianos/farmacologia , Antibacterianos/química , Óxidos , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Environ Res ; 231(Pt 2): 116207, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37244498

RESUMO

Dye-contaminated wastewaters from the printing batik industry are hazardous if discharged into the environment without any treatment. Finding an optimization and reusability assessment of a new fungal-material composite for dye-contaminated wastewater treatment is important for efficiency. The study purposes to optimize fungal mycelia Trametes hirsuta EDN 082 - light expanded clay aggregate (myco-LECA) composite for real priting batik dye wastewater treatment by using Response Surface Methodology with Central Composite Design (RSM-CCD). The factors included myco-LECA weight (2-6 g), wastewater volume (20-80 mL), and glucose concentration (0-10%) were applied for 144 h of incubation time. The result showed that the optimum condition was achieved at 5.1 g myco-LECA, at 20 mL wastewater, and at 9.1% glucose, respectively. In this condition, the decolorization values with an incubation time of 144 h were 90, 93, and 95%, at wavelengths 570, 620, and 670 nm, respectively. A reusability assessment was conducted for 19 cycles and the result showed that decolorization effectiveness was still above 96%. GCMS analysis showed the degradation of most compounds in the wastewater and the degradation products of the wastewater demonstrated detoxification against Vigna radiata and Artemia salina. The study suggests that myco-LECA composite has a good performance and therefore is a promising method for the treatment of printing batik wastewater.


Assuntos
Águas Residuárias , Purificação da Água , Argila , Biodegradação Ambiental , Trametes/metabolismo , Glucose/metabolismo , Corantes
4.
Chemosphere ; 313: 137505, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36509189

RESUMO

No biodegradation methods are absolute in the treatment of all textile dyes, which leads to structure-dependent degradation. In this study, biodegradation of three azo dyes, reactive black 5 (RB5), acid blue 113 (AB113), and acid orange 7 (AO7), was investigated using an immobilized fungus, Trametes hirsuta D7. The degraded metabolites were identified using UPLC-PDA-FTICR MS and the biodegradation pathway followed was proposed. RB5 (92%) and AB113 (97%) were effectively degraded, whereas only 30% of AO7 was degraded. Molecular docking simulations were performed to determine the reason behind the poor degradation of AO7. Weak binding affinity, deficiency in H-bonding interactions, and the absence of interactions between the azo (-NN-) group and active residues of the model laccase enzyme were responsible for the low degradation efficiency of AO7. Furthermore, cytotoxicity and genotoxicity assays confirmed that the fungus-treated dye produced non-toxic metabolites. The observations of this study will be useful for understanding and further improving enzymatic dye biodegradation.


Assuntos
Compostos Azo , Trametes , Simulação de Acoplamento Molecular , Biodegradação Ambiental , Compostos Azo/toxicidade , Compostos Azo/metabolismo , Corantes/química , Lacase/química
5.
RSC Adv ; 12(17): 10409-10423, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35424996

RESUMO

Oxygen doped mesoporous carbon nitride (O-MCN) was successfully synthesized through one-step thermal polymerization of urea and glucose utilizing nanodisc silica (NDS) from rice husk ash as a hard template. The CO2 gas, NH3 and water vapor produced during the thermal process reshaped the morphology and textural properties of the of O-MCN compared to pristine mesoporous carbon nitride (MCN). Highest bisphenol A (BPA) removal achieved under visible light irradiation was 97%, with 60% mineralization ([BPA] = 10 mg L-1: catalyst dosage = 40 mg L-1; pH = 10; 180 min). In addition to mesoporosity, the sub-gap impurity states created from the oxygen doping reduced recombination rate of photogenerated carriers. Holes (h+) and superoxide (O2˙-) were identified as the predominant active species responsible for the photodegradation process. The photodegradation route was proposed based on the intermediates detected by LC-time-of-flight/mass spectrometry (LC/TOF-MS). The Density of States (DOS) showed that oxygen doping resulted in a higher photoactivity due to the stronger localization and delocalization of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). The adsorption pathway of the BPA on the O-MCN and MCN was successfully predicted using the DFT calculations, namely molecular electrostatic potential (MEP), global and local descriptors.

6.
Membranes (Basel) ; 11(8)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34436370

RESUMO

The physicochemical properties of organo-silica xerogels derived from organo catalyst were pervasively investigated, including the effect of one-step catalyst (citric acid) and two-step catalyst (acid-base), and also to observe the effect of sol pH of organo-silica xerogel toward the structure and deconvolution characteristic. The organo-silica xerogels were characterized by FTIR, TGA and nitrogen sorption to obtain the physicochemical properties. The silica sol-gel method was applied to processed materials by employing TEOS (tetraethyl orthosilicate) as the main precursor. The final molar ratio of organo-silica was 1:38:x:y:5 (TEOS:ethanol: citric acid: NH3:H2O) where x is citric acid concentration (0.1-10 × 10-2 M) and y is ammonia concentration (0 to 3 × 10-3 M). FTIR spectra shows that the one-step catalyst xerogel using citric acid was handing over the higher Si-O-Si concentration as well as Si-C bonding than the dual catalyst xerogels with the presence of a base catalyst. The results exhibited that the highest relative area ratio of silanol/siloxane were 0.2972 and 0.1262 for organo catalyst loading at pH 6 and 6.5 of organo-silica sols, respectively. On the other hand, the organo-silica matrices in this work showed high surface area 546 m2 g-1 pH 6.5 (0.07 × 10-2 N citric acid) with pore size ~2.9 nm. It is concluded that the xerogels have mesoporous structures, which are effective for further application to separate NaCl in water desalination.

7.
3 Biotech ; 11(5): 247, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33968590

RESUMO

The biodegradation and biodetoxification of batik industrial wastewater by laccase enzyme immobilised on light expanded clay aggregate (LECA) were investigated. Laccase from Trametes hirsuta EDN 082 was covalently immobilised by modifying the LECA surface using (3-aminopropyl)trimethoxysilane and glutaraldehyde. The enzymatic characterisation of LECA-laccase showed promising results with an enzyme loading of 6.67 U/g and an immobilisation yield of 66.7% at the initial laccase activity of 10 U/g LECA. LECA-laccase successfully degraded batik industrial wastewater containing indigosol dye up to 98.2%. In addition, the decolorisation extent was more than 95.4% after four cycles. The phytotoxicity assessment of Vigna radiata and the microbial toxicity of two pathogenic bacteria, Bacillus subtilis and Pseudomonas aeruginosa, showed biodetoxification of treated batik dye wastewater. The characterisation using 3D light microscopy, scanning electron microscopy and Fourier transform infrared for LECA-laccase confirmed that laccase was successfully immobilised on LECA, and the decolorisation achieved through the combination of adsorption and enzymatic degradation. This study offers an environmentally friendly, effective and affordable LECA-laccase as a method for batik dye wastewater treatment. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02806-8.

8.
J Hazard Mater ; 405: 124176, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33131941

RESUMO

Biodegradation and metabolic pathways of three anthraquinone dyes, Reactive Blue 4 (RB4), Remazol Brilliant Blue - R (RBBR), and Acid Blue 129 (AB129) by Trametes hirsuta D7 fungus immobilized in light expanded clay aggregate (LECA) were investigated. Morphological characteristics observed with scanning electron microscope (SEM) showed successful immobilization of the fungus in LECA. Based on UV absorbance measurement, immobilized T. hirsuta D7 effectively degraded 90%, 95%, and 96% of RB4, RBBR and AB129, respectively. Metabolites were identified with high-resolution mass spectrometry (HRMS) and degradation pathway of the dyes by T. hirsuta D7 was proposed. Toxicity assay on human dermal fibroblast (HDF) showed that anthraquinone dyes exhibits significant toxicity of 35%, 40%, and 34% reduction of cell viability by RB4, RBBR, and AB129, respectively. Fungal treatment resulted in an abatement of the toxicity and cell viability was increased up to 94%. The data clearly showed the effectiveness of immobilized T. hirsuta D7 in LECA on detoxification of anthraquinone dyes. This study provides potential and fundamental understanding of wastewater treatment using the newly isolated fungus T. hirsuta D7.


Assuntos
Antraquinonas , Trametes , Antraquinonas/toxicidade , Biodegradação Ambiental , Argila , Corantes/toxicidade , Humanos , Lacase , Redes e Vias Metabólicas , Polyporaceae
9.
J Hazard Mater ; 278: 454-63, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24997261

RESUMO

The potential of fungal co-culture of the filamentous Pestalotiopsis sp. NG007 with four different basidiomycetes--Trametes versicolor U97, Pleurotus ostreatus PL1, Cerena sp. F0607, and Polyporus sp. S133--for accelerating biodegradation of petroleum hydrocarbons (PHCs) was studied using three different physicochemical characteristic PHCs in soil. All the combinations showed a mutual intermingling mycelial interaction on the agar plates. However, only NG007/S133 (50/50) exhibited an optimum growth rate and enzymatic activities that supported the degradation of asphalt in soil. The co-culture also degraded all fractions at even higher concentrations of the different PHCs. In addition, asphaltene, which is a difficult fraction for a single microorganism to degrade, was markedly degraded by the co-culture, which indicated that the simultaneous biodegradation of aliphatic, aromatic, resin, and asphaltene fractions had occurred in the co-culture. An examination of in-vitro degradation by the crude enzymes and the retrieval fungal culture from the soil after the experiment confirmed the accelerated biodegradation due to enhanced enzyme activities in the co-culture. The addition of piperonyl butoxide or AgNO3 inhibited biodegradation by 81-99%, which demonstrated the important role of P450 monooxygenases and/or dioxygenases in the initial degradation of the aliphatic and aromatic fractions in PHCs.


Assuntos
Basidiomycota/metabolismo , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Poluentes do Solo/metabolismo , Basidiomycota/efeitos dos fármacos , Basidiomycota/enzimologia , Biodegradação Ambiental , Catecol 1,2-Dioxigenase/metabolismo , Técnicas de Cocultura , Proteínas Fúngicas/metabolismo , Lacase/metabolismo , Peroxidases/metabolismo , Butóxido de Piperonila/farmacologia , Nitrato de Prata/farmacologia
10.
Chemosphere ; 103: 105-13, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24331036

RESUMO

Asphalt and fractions thereof can contaminate water and soil environments. Forming as residues in distillation products in crude oil refineries, asphalts consist mostly of asphaltene instead of aliphatics, aromatics, and resins. The high asphaltene content might be responsible for the decrease in bioavailability to microorganisms and therefore reduce the biodegradability of asphalt in the environment. In this study, the effect on asphalt biodegradation by Pestalotiopsis sp. in liquid medium and soil of nonionic Tween surfactants in the presence of Mn2+ and H2O2 was examined. The degradation was enhanced by Tween 40 or Tween 80 (0.1%) in the presence of Mn2+ (1 mM) and H2O2 (0.05 mM). A Tween surfactant, Mn2+, and H2O2 can overcome bioavailability-mediated constraints and increase ligninolytic activities, particularly manganese peroxidase and laccase activities. The study is significant for the bioremediation of asphalt and/or viscous-crude oil-contaminated environments.


Assuntos
Ascomicetos/metabolismo , Hidrocarbonetos/metabolismo , Peróxido de Hidrogênio/metabolismo , Manganês/metabolismo , Polissorbatos/química , Tensoativos/metabolismo , Biodegradação Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...