Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 215(Pt 3): 114420, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36167116

RESUMO

Anaerobic degradation is the major pathway for microbial degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) under electron acceptor lacking conditions. However, how exogenous electron acceptors modulate BTEX degradation through shaping the microbial community structure remains poorly understood. Here, we investigated the effect of various exogenous electron acceptors on BTEX degradation as well as methane production in anaerobic microbiota, which were enriched from the same contaminated soil. It was found that the BTEX degradation capacities of the anaerobic microbiota gradually increased along with the increasing redox potentials of the exogenous electron acceptors supplemented (WE: Without exogenous electron acceptors < SS: Sulfate supplement < FS: Ferric iron supplement < NS: Nitrate supplement), while the complexity of the co-occurring networks (e.g., avgK and links) of the microbiota gradually decreased, showing that microbiota supplemented with higher redox potential electron acceptors were less dependent on the formation of complex microbial interactions to perform BTEX degradation. Microbiota NS showed the highest degrading capacity and the broadest substrate-spectrum for BTEX, and it could metabolize BTEX through multiple modules which not only contained fewer species but also different key microbial taxa (eg. Petrimonas, Achromobacter and Comamonas). Microbiota WE and FS, with the highest methanogenic capacities, shared common core species such as Sedimentibacter, Acetobacterium, Methanobacterium and Smithella/Syntrophus, which cooperated with Geobacter (microbiota WE) or Desulfoprunum (microbiota FS) to perform BTEX degradation and methane production. This study demonstrates that electron acceptors may alter microbial function by reshaping microbial community structure and regulating microbial interactions and provides guidelines for electron acceptor selection for bioremediation of aromatic pollutant-contaminated anaerobic sites.


Assuntos
Poluentes Ambientais , Microbiota , Anaerobiose , Benzeno/química , Derivados de Benzeno , Biodegradação Ambiental , Elétrons , Ferro , Metano , Nitratos/química , Oxidantes , Solo , Sulfatos/química , Tolueno/química , Xilenos
2.
Microb Biotechnol ; 15(1): 215-227, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34875143

RESUMO

Microbial technologies have provided solutions to key challenges in our daily lives for over a century. In the debate about the ongoing climate change and the need for planetary sustainability, microbial ecology and microbial technologies are rarely considered. Nonetheless, they can bring forward vital solutions to decrease and even prevent long-term effects of climate change. The key to the success of microbial technologies is an effective, target-oriented microbiome management. Here, we highlight how microbial technologies can play a key role in both natural, i.e. soils and aquatic ecosystems, and semi-natural or even entirely human-made, engineered ecosystems, e.g. (waste) water treatment and bodily systems. First, we set forward fundamental guidelines for effective soil microbial resource management, especially with respect to nutrient loss and greenhouse gas abatement. Next, we focus on closing the water circle, integrating resource recovery. We also address the essential interaction of the human and animal host with their respective microbiomes. Finally, we set forward some key future potentials, such as microbial protein and the need to overcome microphobia for microbial products and services. Overall, we conclude that by relying on the wisdom of the past, we can tackle the challenges of our current era through microbial technologies.


Assuntos
Microbiota , Solo , Animais , Mudança Climática , Humanos
3.
mBio ; 12(2)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33653887

RESUMO

Microbial fuel cells (MFCs) generate energy while aiding the biodegradation of waste through the activity of an electroactive mixed biofilm. Metabolic cooperation is essential for MFCs' efficiency, especially during early colonization. Thus, examining specific ecological processes that drive the assembly of anode biofilms is highly important for shortening startup times and improving MFC performance, making this technology cost-effective and sustainable. Here, we use metagenomics to show that bioaugmentation of the anode surface with a taxonomically defined electroactive consortium, dominated by Desulfuromonas, resulted in an extremely rapid current density generation. Conversely, the untreated anode surface resulted in a highly stochastic and slower biofilm assembly. Remarkably, an efficient anode colonization process was obtained only if wastewater was added, leading to a nearly complete replacement of the bioaugmented community by Geobacter lovleyi Although different approaches to improve MFC startup have been investigated, we propose that only the combination of anode bioaugmentation with wastewater inoculation can reduce stochasticity. Such an approach provides the conditions that support the growth of specific newly arriving species that positively support the fast establishment of a highly functional anode biofilm.IMPORTANCE Mixed microbial communities play important roles in treating wastewater, in producing renewable energy, and in the bioremediation of pollutants in contaminated environments. While these processes are well known, especially the community structure and biodiversity, how to efficiently and robustly manage microbial community assembly remains unknown. Moreover, it has been shown that a high degree of temporal variation in microbial community composition and structure often occurs even under identical environmental conditions. This heterogeneity is directly related to stochastic processes involved in microbial community organization, similarly during the initial stages of biofilm formation on surfaces. In this study, we show that anode surface pretreatment alone is not sufficient for a substantial improvement in startup times in microbial fuel cells (MFCs), as previously thought. Rather, we have discovered that the combination of applying a well-known consortium directly on the anode surface together with wastewater (including the bacteria that they contain) is the optimized management scheme. This allowed a selected colonization process by the wastewater species, which improved the functionality relative to that of untreated systems.


Assuntos
Biodegradação Ambiental , Biofilmes/crescimento & desenvolvimento , Eletrodos , Microbiota , Purificação da Água/métodos , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Fontes de Energia Bioelétrica/microbiologia , Águas Residuárias/microbiologia
4.
Sci Signal ; 13(632)2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32430292

RESUMO

In nature, bacteria form biofilms-differentiated multicellular communities attached to surfaces. Within these generally sessile biofilms, a subset of cells continues to express motility genes. We found that this subpopulation enabled Bacillus subtilis biofilms to expand on high-friction surfaces. The extracellular matrix (ECM) protein TasA was required for the expression of flagellar genes. In addition to its structural role as an adhesive fiber for cell attachment, TasA acted as a developmental signal stimulating a subset of biofilm cells to revert to a motile phenotype. Transcriptomic analysis revealed that TasA stimulated the expression of a specific subset of genes whose products promote motility and repress ECM production. Spontaneous suppressor mutations that restored motility in the absence of TasA revealed that activation of the biofilm-motility switch by the two-component system CssR/CssS antagonized the TasA-mediated reversion to motility in biofilm cells. Our results suggest that although mostly sessile, biofilms retain a degree of motility by actively maintaining a motile subpopulation.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Proteínas da Matriz Extracelular/metabolismo
5.
Bioresour Technol ; 212: 151-159, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27092994

RESUMO

For microbial fuel cells (MFCs) to become a cost-effective wastewater treatment technology, they must produce a stable electro-active microbial community quickly and operate under realistic wastewater nutrient conditions. The composition of the anodic-biofilm and planktonic-cells communities was followed temporally for MFCs operated under typical laboratory phosphate concentrations (134mgL(-1)P) versus wastewater phosphate concentrations (16mgL(-1)P). A stable peak voltage was attained two-fold faster in MFCs operating under lower phosphate concentration. All anodic-biofilms were composed of well-known exoelectrogenic bacterial families; however, MFCs showing faster startup and a stable voltage had a Desulfuromonadaceae-dominated-biofilm, while biofilms co-dominated by Desulfuromonadaceae and Geobacteraceae characterized slower or less stable MFCs. Interestingly,planktonic-cell concentrations of these bacteria followed a similar trend as the anodic-biofilm and could therefore serve as a biomarker for its formation. These results demonstrate that wastewater-phosphate concentrations do not compromise MFCs efficiency, and considerably speed up startup times.


Assuntos
Bactérias/efeitos dos fármacos , Fontes de Energia Bioelétrica/microbiologia , Fosfatos/farmacologia , Condutividade Elétrica , Eletroquímica , Concentração de Íons de Hidrogênio , Plâncton/efeitos dos fármacos , Plâncton/metabolismo , Análise de Componente Principal , Fatores de Tempo
6.
FEMS Microbiol Ecol ; 90(1): 175-83, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25056670

RESUMO

Ammonia oxidizers catalyze the first step of nitrification. Combined microbial nitrification-denitrification activities are essential for the removal of excess nitrogen from water bodies. In sandy streambeds, bed form structures are created by water flow and lead to the creation of heterogeneous microenvironments. The objective of this study, therefore, was to investigate the effect of bed form morphology on the abundance and activity of ammonia-oxidizing bacteria (AOB) within a benthic biofilm. An 8-month-old benthic biofilm was established in a recirculating laboratory flume under controlled flow conditions and frequent amendment with ammonium. The sand bed was arranged into bed form structures. The highest concentrations of chlorophyll a (indicative of algae) were measured on the upstream side of the bed forms. The biofilm was dominated by Nitrosospira species, and amoA gene abundance was higher on the downstream sides of the bed forms with no significant difference in oxygen consumption between the upstream and downstream sections of the bed form. In contrast, potential ammonium oxidation rates were higher on the upstream sides of the bed forms. The results suggest that bed form morphology can affect the spatial distribution and activity of AOB, possibly through the creation of distinct microhabitats. These results contribute to our understanding of nitrogen transformations and removal from streams.


Assuntos
Amônia/metabolismo , Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Bactérias/química , Bactérias/classificação , Bactérias/isolamento & purificação , Biofilmes , Biomassa , Clorofila/análise , Clorofila A , Nitrificação , Oxirredução , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...