Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(23): 24282-24289, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38009580

RESUMO

Efficient and stable catalysts are highly desired for the electrochemical conversion of hydrogen, oxygen, and water molecules, processes which are crucial for renewable energy conversion and storage technologies. Herein, we report the development of hollow nitrogenated carbon sphere (HNC) dispersed rhodium (Rh) single atoms (Rh1HNC) as an efficient catalyst for bifunctional catalysis. The Rh1HNC was achieved by anchoring Rh single atoms in the HNC matrix with an Rh-N3C1 configuration, via a combination of in situ polymerization and carbonization approach. Benefiting from the strong metal atom-support interaction (SMASI), the Rh and C atoms can collaborate to achieve robust electrochemical performance toward both the hydrogen evolution and oxygen reduction reactions in acidic media. This work not only provides an active site with favorable SMASI for bifunctional catalysis but also brings a strategy for the design and synthesis of efficient and stable bifunctional catalysts for diverse applications.

2.
Nature ; 620(7973): 323-327, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37344595

RESUMO

The black phase of formamidinium lead iodide (FAPbI3) perovskite shows huge promise as an efficient photovoltaic, but it is not favoured energetically at room temperature, meaning that the undesirable yellow phases are always present alongside it during crystallization1-4. This problem has made it difficult to formulate the fast crystallization process of perovskite and develop guidelines governing the formation of black-phase FAPbI3 (refs. 5,6). Here we use in situ monitoring of the perovskite crystallization process to report an oriented nucleation mechanism that can help to avoid the presence of undesirable phases and improve the performance of photovoltaic devices in different film-processing scenarios. The resulting device has a demonstrated power-conversion efficiency of 25.4% (certified 25.0%) and the module, which has an area of 27.83 cm2, has achieved an impressive certified aperture efficiency of 21.4%.

3.
Adv Mater ; 34(16): e2110351, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35174560

RESUMO

Narrow-bandgap (NBG) tin (Sn)-lead (Pb) perovskites generally have a high density of unintentional p-type self-doping, which reduces the charge-carrier lifetimes, diffusion lengths, and device efficiencies. Here, a p-n homojunction across the Sn-Pb perovskite is demonstrated, which results from a gradient doping by barium ions (Ba2+ ). It is reported that 0.1 mol% Ba2+ can effectively compensate the p-doping of Sn-Pb perovskites or even turns it to n-type without changing its bandgap. Ba2+ cations are found to stay at the interstitial sites and work as shallow electron donor. In addition, Ba2+ cations show a unique heterogeneous distribution in perovskite film. Most of the barium ions stay in the top 600 nm region of the perovskite films and turn it into weakly n-type, while the bottom portion of the film remains as p-type. The gradient doping forms a homojunction from top to bottom of the perovskite films with a built-in field that facilitates extraction of photogenerated carriers, resulting in an increased carrier extraction length. This strategy enhances the efficiency of Sn-Pb perovskite single-junction solar cells to over 21.0% and boosts the efficiencies of monolithic perovskite-perovskite tandem solar cells to 25.3% and 24.1%, for active areas of 5.9 mm2  and 0.94 cm2 , respectively.

4.
Science ; 375(6576): 71-76, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34822309

RESUMO

The performance of three-dimensional (3D) organic-inorganic halide perovskite solar cells (PSCs) can be enhanced through surface treatment with 2D layered perovskites that have efficient charge transport. We maximized hole transport across the layers of a metastable Dion-Jacobson (DJ) 2D perovskite that tuned the orientational arrangements of asymmetric bulky organic molecules. The reduced energy barrier for hole transport increased out-of-plane transport rates by a factor of 4 to 5, and the power conversion efficiency (PCE) for the 2D PSC was 4.9%. With the metastable DJ 2D surface layer, the PCE of three common 3D PSCs was enhanced by approximately 12 to 16% and could reach approximately 24.7%. For a triple-cation­mixed-halide PSC, 90% of the initial PCE was retained after 1000 hours of 1-sun operation at ~40°C in nitrogen.

5.
Adv Mater ; 33(15): e2008820, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33687773

RESUMO

The long-term operational stability of perovskite light-emitting diodes (PeLEDs), especially red PeLEDs with only several hours typically, has always faced great challenges. Stable ß-CsPbI3 nanocrystals (NCs) are demonstrated for highly efficient and stable red-emitting PeLEDs through incorporation of poly(maleic anhydride-alt-1-octadecene) (PMA) in synthesizing the NCs. The PMA can chemically interact with PbI2 in the precursors via the coupling effect between O groups in PMA and Pb2+ to favor crystallization of stable ß-CsPbI3 NCs. Meanwhile, the cross-linked PMA significantly reduces the PbCs anti-site defect on the surface of the ß-CsPbI3 NCs. Benefiting from the improved crystal phase quality, the photoluminescence quantum yield for ß-CsPbI3 NCs films remarkably increases from 34% to 89%. The corresponding red-emitting PeLEDs achieves a high external quantum efficiency of 17.8% and superior operational stability with the lifetime, the time to half the initial electroluminescence intensity (T50 ) reaching 317 h at a constant current density of 30 mA cm-2 .

6.
Science ; 371(6529): 636-640, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33542138

RESUMO

The band edges of metal-halide perovskites with a general chemical structure of ABX3 (A, usually a monovalent organic cation; B, a divalent cation; and X, a halide anion) are constructed mainly of the orbitals from B and X sites. Hence, the structural and compositional varieties of the inorganic B-X framework are primarily responsible for regulating their electronic properties, whereas A-site cations are thought to only help stabilize the lattice and not to directly contribute to near-edge states. We report a π-conjugation-induced extension of electronic states of A-site cations that affects perovskite frontier orbitals. The π-conjugated pyrene-containing A-site cations electronically contribute to the surface band edges and influence the carrier dynamics, with a properly tailored intercalation distance between layers of the inorganic framework. The ethylammonium pyrene increased hole mobilities, improved power conversion efficiencies relative to that of a reference perovskite, and enhanced device stability.

7.
J Phys Chem Lett ; 9(18): 5386-5391, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30160489

RESUMO

Understanding the water-infiltration process is crucial for improving the long-term stability of perovskite solar cells (PSCs). Although many attempts have been made in this regard, the role of growth condition in PSC synthesis, which has been observed experimentally to be essential for the stability of PSCs, remains elusive. Using first-principles tools, we demonstrate that the growth condition strongly controls the water-infiltration process of PSCs by dictating the formation of point defects on PSC surfaces. The resulting point defects are found to alter both the rate and the pathways of the water-infiltration process substantially. Our work builds a new scenario for understanding the relation between the PSC decomposition mechanism and its preparation methods; it not only sheds new insights for decrypting experimental phenomenon, but also provides important guidance for future preparation of PSCs with improved water resistance.

8.
Chemistry ; 24(43): 11051-11058, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29732631

RESUMO

One of the long-standing issues that prohibits large-scale CO2 reutilization is the low aqueous solubility of CO2 and the incurring inefficient mass transport of CO2 . Herein, we suggest a feasible way to promote the CO2 reutilization by integrating the storage and reduction, with a new covalent organic framework (COF) series constituted by cobalt-phthalocyanine and boronic acid linkers. We find that the porous structure of the cobalt COF is competitive in the CO2 storage and can sustain a high CO2 concentration around the reduction center, whereas the mass transport of CO2 as well as the efficiency of the CO2 reduction is significantly improved. The predicted cobalt COF exhibits an overpotential of 0.27 V and a CO production rate, which is 97.7 times higher than in aqueous solution, for the CO2 reduction. Our work provides a promising candidate for the CO2 reutilization, with valuable insights and an important prototype for future practical design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...