Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(14): 18300-18310, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36988098

RESUMO

Polyurethane (PU) is a widely used polymer material that will age under prolonged exposure to ultraviolet (UV) light, shortening the service life. Several methods have been used to prepare the anti-UV PU, including adding nonreactive anti-UV additives, functional fillers, and biological antioxidant molecules. However, the nonreactive anti-UV additives may migrate during long-term use, the functional fillers may damage the mechanical properties and seriously reduce the light transmittance of the sample, and the biological antioxidant molecules will inevitably color the sample. To solve these problems, in this work, a benzotriazole UV absorber (Chiguard R-455) was introduced into the PU molecular chains by in situ polymerization to prepare the nonmigrating intrinsic anti-UV PU sample with high performance and colorless transparency. The anti-UV PU samples exhibit light transmittance of over 88% in the visible range and superior mechanical properties with tensile strength higher than 65 MPa and elongation at break higher than 900%. After 24 h UV irradiation (200 W, 365 nm), the tensile strength and elongation at break of pure PU sample are significantly reduced to only 8.9 and 15.8% of the original one, respectively. On the contrary, the addition of Chiguard R-455 will endow the PU sample with excellent anti-UV performance. After 24 h UV irradiation, the tensile strength (67.2 ± 1.6 MPa) and elongation at break (917.4 ± 30.0%) of PU-0.5% (the content of Chiguard R-455 is only 0.5 wt %) have changed little compared with the sample without irradiation (67.4 ± 3.5 MPa and 919.4 ± 26.5%). Additionally, the anti-UV mechanism of the PU sample is systematically studied. This work provides a feasible method for preparing colorless, transparent, high-performance, nonmigrating intrinsic UV-shielding PU samples, which can be used as a UV light-shielding material in various fields with visible and aesthetic requirements, such as protection fields and wearable products.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36360649

RESUMO

Rapid urbanization in mega-urban agglomerations disturbs the balance of carbon storage supply and demand (CSD) and constrains the achievement of sustainable development goals. Here, we developed a socio-ecological system (SES) framework coupled with ecosystem services (ES) cascade and DPSIR model to systematically analyze the impacts and responses of urbanization affecting CSD. We quantified urbanization and CSD using multi-source remote sensing data, such as land use and night lighting, together with related socio-economic data, such as total energy consumption, population and GDP. We found that from 2000 to 2020, the urbanization of Yangtze River Delta region (YRD) led to a decrease of 2.75% in carbon storage supply and an increase of 226.45% in carbon storage demand. However, carbon storage supply was still larger than carbon storage demand, and the spatial mismatch of CSD is the most important problem at present. Therefore, it is necessary to explore the response measures from the comprehensive perspective of SES. We identified key ecological conservation areas using a Marxan model to protect the carbon storage capacity in ecological subsystems, and promoted a carbon compensation scheme based on both the grandfather principle and the carbon efficiency principle, reconciling the contradiction between ecological conservation and socio-economic development in the social subsystem. Finally, this study quantified the threshold of urbanization based on the carbon neutrality target at which CSD reaches an equilibrium state. This study proposed a SES framework, and a set of methodologies to quantify the relationship between urbanization and CSD, which will help mega-urban agglomerations to promote harmonious development of urbanization and ecological conservation and to achieve the carbon peak and carbon neutrality targets proposed by the Chinese government.


Assuntos
Ecossistema , Urbanização , Carbono , Rios , China , Cidades , Conservação dos Recursos Naturais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA