Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(12): 5981-5996, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37099375

RESUMO

Progesterone receptor (PGR) plays diverse roles in reproductive tissues and thus coordinates mammalian fertility. In the ovary, rapid acute induction of PGR is the key determinant of ovulation through transcriptional control of a unique set of genes that culminates in follicle rupture. However, the molecular mechanisms for this specialized PGR function in ovulation is poorly understood. We have assembled a detailed genomic profile of PGR action through combined ATAC-seq, RNA-seq and ChIP-seq analysis in wildtype and isoform-specific PGR null mice. We demonstrate that stimulating ovulation rapidly reprograms chromatin accessibility in two-thirds of sites, correlating with altered gene expression. An ovary-specific PGR action involving interaction with RUNX transcription factors was observed with 70% of PGR-bound regions also bound by RUNX1. These transcriptional complexes direct PGR binding to proximal promoter regions. Additionally, direct PGR binding to the canonical NR3C motif enable chromatin accessibility. Together these PGR actions mediate induction of essential ovulatory genes. Our findings highlight a novel PGR transcriptional mechanism specific to ovulation, providing new targets for infertility treatments or new contraceptives that block ovulation.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Regulação da Expressão Gênica , Receptores de Progesterona , Transcrição Gênica , Animais , Feminino , Camundongos , Cromatina/genética , Montagem e Desmontagem da Cromatina/genética , Mamíferos/genética , Camundongos Knockout , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo
2.
Int J Mol Sci ; 23(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36430923

RESUMO

Genetic alterations of the RUNX1 gene are associated with a variety of malignancies, including female-related cancers. The role of RUNX1 as either a tumor suppressor gene or an oncogene is tissue-dependent and varies based on the cancer type. Both the amplification and deletion of the RUNX1 gene have been associated with ovarian cancer in humans. In this study, we investigated the effects of Runx1 loss on ovarian pathogenesis in mice. A conditional loss of Runx1 in the somatic cells of the ovary led to an increased prevalence of ovarian tumors in aged mice. By the age of 15 months, 27% of Runx1 knockout (KO) females developed ovarian tumors that presented characteristics of granulosa cell tumors. While ovaries from young adult mice did not display tumors, they all contained abnormal follicle-like lesions. The granulosa cells composing these follicle-like lesions were quiescent, displayed defects in differentiation and were organized in a rosette-like pattern. The RNA-sequencing analysis further revealed differentially expressed genes in Runx1 KO ovaries, including genes involved in metaplasia, ovarian cancer, epithelial cell development, tight junctions, cell-cell adhesion, and the Wnt/beta-catenin pathway. Together, this study showed that Runx1 is required for normal granulosa cell differentiation and prevention of ovarian tumor development in mice.


Assuntos
Tumor de Células da Granulosa , Neoplasias Ovarianas , Humanos , Camundongos , Feminino , Animais , Lactente , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Células da Granulosa/metabolismo , Neoplasias Ovarianas/patologia , Tumor de Células da Granulosa/metabolismo , Carcinoma Epitelial do Ovário/patologia
3.
Front Cell Dev Biol ; 10: 944776, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158204

RESUMO

Differentiation of the bipotential gonadal primordium into ovaries and testes is a common process among vertebrate species. While vertebrate ovaries eventually share the same functions of producing oocytes and estrogens, ovarian differentiation relies on different morphogenetic, cellular, and molecular cues depending on species. The aim of this review is to highlight the conserved and divergent features of ovarian differentiation through an evolutionary perspective. From teleosts to mammals, each clade or species has a different story to tell. For this purpose, this review focuses on three specific aspects of ovarian differentiation: ovarian morphogenesis, the evolution of the role of estrogens on ovarian differentiation and the molecular pathways involved in granulosa cell determination and maintenance.

4.
Front Endocrinol (Lausanne) ; 13: 910964, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846302

RESUMO

In the 1940s, Alfred Jost demonstrated the necessity of testicular secretions, particularly androgens, for male internal and external genitalia differentiation. Since then, our knowledge of androgen impacts on differentiation of the male internal (Wolffian duct) and external genitalia (penis) has been drastically expanded upon. Between these two morphologically and functionally distinct organs, divergent signals facilitate the establishment of tissue-specific identities. Conversely, conserved actions of androgen signaling are present in both tissues and are largely responsible for the growth and expansion of the organs. In this review we synthesize the existing knowledge of the cell type-specific, organ specific, and conserved signaling mechanisms of androgens. Mechanistic studies on androgen signaling in the Wolffian duct and male external genitalia have largely been conducted in mouse model organisms. Therefore, the majority of the review is focused on mouse model studies.


Assuntos
Androgênios , Receptores Androgênicos , Animais , Genitália Masculina , Masculino , Camundongos , Transdução de Sinais , Sistema Urogenital
5.
Front Genet ; 11: 511286, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193599

RESUMO

Single-cell RNA sequencing (scRNA-seq) technologies have precipitated the development of bioinformatic tools to reconstruct cell lineage specification and differentiation processes with single-cell precision. However, current start-up costs and recommended data volumes for statistical analysis remain prohibitively expensive, preventing scRNA-seq technologies from becoming mainstream. Here, we introduce single-cell amalgamation by latent semantic analysis (SALSA), a versatile workflow that combines measurement reliability metrics with latent variable extraction to infer robust expression profiles from ultra-sparse sc-RNAseq data. SALSA uses a matrix focusing approach that starts by identifying facultative genes with expression levels greater than experimental measurement precision and ends with cell clustering based on a minimal set of Profiler genes, each one a putative biomarker of cluster-specific expression profiles. To benchmark how SALSA performs in experimental settings, we used the publicly available 10X Genomics PBMC 3K dataset, a pre-curated silver standard from human frozen peripheral blood comprising 2,700 single-cell barcodes, and identified 7 major cell groups matching transcriptional profiles of peripheral blood cell types and driven agnostically by < 500 Profiler genes. Finally, we demonstrate successful implementation of SALSA in a replicative scRNA-seq scenario by using previously published DropSeq data from a multi-batch mouse retina experimental design, thereby identifying 10 transcriptionally distinct cell types from > 64,000 single cells across 7 independent biological replicates based on < 630 Profiler genes. With these results, SALSA demonstrates that robust pattern detection from scRNA-seq expression matrices only requires a fraction of the accrued data, suggesting that single-cell sequencing technologies can become affordable and widespread if meant as hypothesis-generation tools to extract large-scale differential expression effects.

6.
Biol Reprod ; 103(5): 966-977, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-32945847

RESUMO

Development and functions of the ovary rely on appropriate signaling and communication between various ovarian cell types. FOXL2, a transcription factor that plays a key role at different stages of ovarian development, is associated with primary ovarian insufficiency and ovarian cancer as a result of its loss-of-function or mutations. In this study, we investigated the impact of aberrant, constitutive expression of FOXL2 in somatic cells of the ovary. Overexpression of FOXL2 that started during fetal life resulted in defects in nest breakdown and consequent formation of polyovular follicles. Granulosa cell differentiation was impaired and recruitment and differentiation of steroidogenic theca cells was compromised. As a consequence, adult ovaries overexpressing FOXL2 exhibited defects in compartmentalization of granulosa and theca cells, significant decreased steroidogenesis and lack of ovulation. These findings demonstrate that fine-tuned expression of FOXL2 is required for proper folliculogenesis and fertility.


Assuntos
Proteína Forkhead Box L2/metabolismo , Folículo Ovariano/metabolismo , Ovário/metabolismo , Animais , Diferenciação Celular/fisiologia , Feminino , Proteína Forkhead Box L2/genética , Células da Granulosa/metabolismo , Camundongos , Mutação , Ovário/crescimento & desenvolvimento , Células Tecais/metabolismo
7.
Biol Reprod ; 103(5): 951-965, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-32948877

RESUMO

The transcription factor forkhead box L2 (FOXL2) regulates sex differentiation and reproductive function. Elevated levels of this transcription factor have been observed in the diseases of the uterus, such as endometriosis. However, the impact of elevated FOXL2 expression on uterine physiology remains unknown. In order to determine the consequences of altered FOXL2 in the female reproductive axis, we generated mice with over-expression of FOXL2 (FOXL2OE) by crossing Foxl2LsL/+ with the Progesterone receptor Pgrcre model. FOXL2OE uterus showed severe morphological abnormality including abnormal epithelial stratification, blunted adenogenesis, increased endometrial fibrosis, and disrupted myometrial morphology. In contrast, increasing FOXL2 levels specifically in uterine epithelium by crossing the Foxl2LsL/+ with the lactoferrin Ltficre mice resulted in the eFOXL2OE mice with uterine epithelial stratification but without defects in endometrial fibrosis and adenogenesis, demonstrating a role of the endometrial stroma in the uterine abnormalities of the FOXL2OE mice. Transcriptomic analysis of 12 weeks old Pgrcre and FOXL2OE uterus at diestrus stage showed multiple signaling pathways related with cellular matrix, wnt/ß-catenin, and altered cell cycle. Furthermore, we found FOXL2OE mice were sterile. The infertility was caused in part by a disruption of the hypophyseal ovarian axis resulting in an anovulatory phenotype. The FOXL2OE mice failed to show decidual responses during artificial decidualization in ovariectomized mice demonstrating the uterine contribution to the infertility phenotype. These data support that aberrantly increased FOXL2 expressions in the female reproductive tract can disrupt ovarian and uterine functions.


Assuntos
Proteína Forkhead Box L2/metabolismo , Anormalidades Urogenitais/metabolismo , Útero/anormalidades , Útero/metabolismo , Animais , Endométrio/metabolismo , Feminino , Proteína Forkhead Box L2/genética , Regulação da Expressão Gênica , Camundongos , Camundongos Transgênicos , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Transdução de Sinais/fisiologia , Transcriptoma , Anormalidades Urogenitais/genética
8.
Reprod Toxicol ; 95: 95-103, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32428649

RESUMO

In utero exposure to arsenite (iAs) is known to increase disease risks later in life. We investigated the effect of in utero exposure to iAs in the drinking water on metabolic and reproductive parameters in male mouse offspring at postnatal and adult stages. Pregnant CD-1 mice were exposed to iAs (as sodium arsenite) in the drinking water at 0 (control), 10 ppb (EPA standard for drinking water), and 42.5 ppm (tumor-inducing dose in mice) from embryonic day (E) 10-18. At birth, pups were fostered to unexposed females. Male offspring exposed to 10 ppb in utero exhibited increase in body weight at birth when compared to controls. Male offspring exposed to 42.5 ppm in utero showed a tendency for increased body weight and a smaller anogenital distance. The body weight in iAs-exposed pups continued to increase significantly compared to control at 3 weeks and 11 weeks of age. At 5 months of age, iAs-exposed males exhibited greater body fat content and glucose intolerance. Male offspring exposed to 10 ppb in utero had higher circulating levels of leptin compared to control. In addition, males exposed to 42.5 ppm in utero exhibited decreased total number of pups born compared to controls and lower average number of litters sired over a six-month period. These results indicate that in utero exposure to iAs at either human relevant concentration or tumor-inducing concentration is a potential cause of developmental origin of metabolic and reproductive dysfunction in adult male mice.


Assuntos
Arsenitos/toxicidade , Efeitos Tardios da Exposição Pré-Natal , Animais , Peso Corporal/efeitos dos fármacos , Feminino , Fertilidade/efeitos dos fármacos , Glucose/metabolismo , Leptina/sangue , Masculino , Troca Materno-Fetal , Camundongos , Gravidez , Espermatozoides/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia
9.
Development ; 147(6)2020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-32108023

RESUMO

Members of the Iroquois B (IrxB) homeodomain cluster genes, specifically Irx3 and Irx5, are crucial for heart, limb and bone development. Recently, we reported their importance for oocyte and follicle survival within the developing ovary. Irx3 and Irx5 expression begins after sex determination in the ovary but remains absent in the fetal testis. Mutually antagonistic molecular signals ensure ovary versus testis differentiation with canonical Wnt/ß-catenin signals paramount for promoting the ovary pathway. Notably, few direct downstream targets have been identified. We report that Wnt/ß-catenin signaling directly stimulates Irx3 and Irx5 transcription in the developing ovary. Using in silico analysis of ATAC- and ChIP-Seq databases in conjunction with mouse gonad explant transfection assays, we identified TCF/LEF-binding sequences within two distal enhancers of the IrxB locus that promote ß-catenin-responsive ovary expression. Meanwhile, Irx3 and Irx5 transcription is suppressed within the developing testis by the presence of H3K27me3 on these same sites. Thus, we resolved sexually dimorphic regulation of Irx3 and Irx5 via epigenetic and ß-catenin transcriptional control where their ovarian presence promotes oocyte and follicle survival vital for future ovarian health.


Assuntos
Epigênese Genética/fisiologia , Gônadas/embriologia , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo , Animais , Diferenciação Celular/genética , Células Cultivadas , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/metabolismo , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Ovário/embriologia , Ovário/metabolismo , Caracteres Sexuais , Diferenciação Sexual/genética , Testículo/embriologia , Testículo/metabolismo , Fatores de Transcrição/metabolismo
10.
Sex Dev ; 14(1-6): 51-59, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33684916

RESUMO

Sexually dimorphic establishment of the reproductive tract system requires sex-specific regression of the Wolffian duct and Müllerian duct in the mesonephros. In an XX embryo, the Wolffian duct regresses under the control of the mesenchymal transcription factor COUP-TFII. To understand cellular and molecular actions underlying Wolffian duct regression, we performed transcriptomic analyses of XX mesonephroi with or without Coup-tfII and genome-wide analysis of COUP-TFII chromatin occupancy in XX mesonephroi. The integrative analysis of COUP-TFII genome-wide binding and transcriptomic analysis revealed the suppression of muscle differentiation and extracellular matrix genes by COUP-TFII and identified a group of potential transcriptional partners of COUP-TFII in the mesenchyme that potentially facilitate Wolffian duct regression. These findings provide insights into the molecular action of COUP-TFII in the Wolffian duct mesenchyme and identify a list of biologically relevant candidate genes and pathways for future functional analyses in sexual differentiation of reproductive tracts.

11.
Nat Commun ; 10(1): 5116, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31712577

RESUMO

Sex determination of the gonads begins with fate specification of gonadal supporting cells into either ovarian pre-granulosa cells or testicular Sertoli cells. This fate specification hinges on a balance of transcriptional control. Here we report that expression of the transcription factor RUNX1 is enriched in the fetal ovary in rainbow trout, turtle, mouse, goat, and human. In the mouse, RUNX1 marks the supporting cell lineage and becomes pre-granulosa cell-specific as the gonads differentiate. RUNX1 plays complementary/redundant roles with FOXL2 to maintain fetal granulosa cell identity and combined loss of RUNX1 and FOXL2 results in masculinization of fetal ovaries. At the chromatin level, RUNX1 occupancy overlaps partially with FOXL2 occupancy in the fetal ovary, suggesting that RUNX1 and FOXL2 target common sets of genes. These findings identify RUNX1, with an ovary-biased expression pattern conserved across species, as a regulator in securing the identity of ovarian-supporting cells and the ovary.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Feto/metabolismo , Proteína Forkhead Box L2/metabolismo , Ovário/embriologia , Animais , Animais Recém-Nascidos , Sequência de Bases , Cromatina/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Feminino , Genoma , Células da Granulosa/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fatores de Transcrição SOX9/metabolismo , Transcriptoma/genética
12.
Hum Mol Genet ; 27(24): 4273-4287, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30212841

RESUMO

The identity of the gonads is determined by which fate, ovarian granulosa cell or testicular Sertoli cell, the bipotential somatic cell precursors choose to follow. In most vertebrates, the conserved transcription factor FOXL2 contributes to the fate of granulosa cells. To understand FOXL2 functions during gonad differentiation, we performed genome-wide analysis of FOXL2 chromatin occupancy in fetal ovaries and established a genetic mouse model that forces Foxl2 expression in the fetal testis. When FOXL2 was ectopically expressed in the somatic cell precursors in the fetal testis, FOXL2 was sufficient to repress Sertoli cell differentiation, ultimately resulting in partial testis-to-ovary sex-reversal. Combining genome-wide analysis of FOXL2 binding in the fetal ovary with transcriptomic analyses of our Foxl2 gain-of-function and previously published Foxl2 loss-of-function models, we identified potential pathways responsible for the feminizing action of FOXL2. Finally, comparison of FOXL2 genome-wide occupancy in the fetal ovary with testis-determining factor SOX9 genome-wide occupancy in the fetal testis revealed extensive overlaps, implying that antagonistic signals between FOXL2 and SOX9 occur at the chromatin level.


Assuntos
Proteína Forkhead Box L2/genética , Fatores de Transcrição SOX9/genética , Processos de Determinação Sexual/genética , Diferenciação Sexual/genética , Animais , Cromatina/genética , Feminino , Desenvolvimento Fetal/genética , Feto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Genoma/genética , Gônadas/crescimento & desenvolvimento , Masculino , Camundongos , Ovário/crescimento & desenvolvimento , Ligação Proteica , Testículo/crescimento & desenvolvimento , Transcriptoma/genética
13.
Sci Rep ; 8(1): 9662, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29941866

RESUMO

Fetal germ cell development is regulated by an elaborate combination of cell-extrinsic and cell-intrinsic signals. Here we identify a novel role for the Krüppel-like transcription factor Gli-Similar 3 (Glis3) in male germ cell development in the mouse embryos. Glis3 is expressed in male germ cells during the brief window of time prior to initiation of piRNA-dependent retrotransposon surveillance. Disruption of Glis3 function led to a widespread reduction in retrotransposon silencing factors, aberrant retrotransposon expression and pronounced germ cell loss. Experimental induction of precocious Glis3 expression in vivo before its normal expression resulted in premature expression of several piRNA pathway members, suggesting that GLIS3 is necessary for the activation of the retrotransposon silencing programs. Our findings reveal an unexpected role for GLIS3 in the development of male germ cells and point to a central role for GLIS3 in the control of retrotransposon silencing in the fetal germline.


Assuntos
Feto/citologia , Inativação Gênica , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Retroelementos/genética , Espermatozoides/metabolismo , Testículo/citologia , Transativadores/deficiência , Transativadores/genética , Animais , Sobrevivência Celular/genética , Proteínas de Ligação a DNA , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Masculino , Camundongos , Fenótipo
14.
Endocrinology ; 159(7): 2563-2575, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29788357

RESUMO

Ovarian development requires coordinate communications among oocytes, granulosa cells, and theca cells. Two Hedgehog (Hh) pathway ligands, Desert hedgehog (Dhh) and Indian hedgehog (Ihh), are produced by the granulosa cells and work together to regulate theca cell specification and development. Mice lacking both Dhh and Ihh had loss of normal ovarian function, which raised the question of which biological actions are specifically controlled by each ligand during folliculogenesis. By comparing the reproductive fitness, hormonal profiles, and ovarian transcriptomes among control, Dhh single-knockout (KO), Ihh KO, and Dhh/Ihh double-knockout (DKO) mice, we examined the specific roles of Dhh and Ihh in these processes. Dhh/Ihh DKO female mice were infertile because of a lack of theca cells and their steroid product androgen. Although Dhh and Ihh KO mice were fertile with normal folliculogenesis, they had decreased androgen production and alterations in their ovarian transcriptomes. Absence of Ihh led to aberrant steroidogenesis and elevated inflammation responses, which were not found in Dhh KO mouse ovaries, implicating that IHH has a greater impact than DHH on the activation of the Hh signaling pathway in the ovary. Our findings provide insight into not only how the Hh pathway influences folliculogenesis but also the distinct and overlapping roles of Dhh and Ihh in supporting ovarian development.


Assuntos
Proteínas Hedgehog/deficiência , Proteínas Hedgehog/metabolismo , Animais , Feminino , Camundongos , Camundongos Knockout , Ovário/metabolismo , Reprodução/genética , Reprodução/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
15.
Genesis ; 55(10)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28875587

RESUMO

Recombinase responsive mouse lines expressing diphtheria toxin subunit A (DTA) are well established tools for targeted ablation of genetically defined cell populations. Here we describe a new knock-in allele at the Gt(Rosa)26Sor locus that retains the best features of previously described DTA alleles-including a CAG promoter, attenuated mutant DTA cDNA, and ubiquitous EGFP labeling-with the addition of a Cre-dependent FLEx switch for tight control of expression. The FLEx switch consists of two pairs of antiparallel lox sites requiring Cre-mediated recombination for inversion of the DTA to the proper orientation for transcription. We demonstrate its utility by Cre-dependent ablation of both a broad domain in the embryonic nervous system and a discrete population of cells in the fetal gonads. We conclude that this new DTA line is useful for targeted ablation of genetically-defined cell populations.


Assuntos
Toxina Diftérica/genética , Técnicas de Introdução de Genes/métodos , Animais , Toxina Diftérica/metabolismo , Gônadas/citologia , Gônadas/embriologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Integrases/genética , Integrases/metabolismo , Camundongos , Sistema Nervoso/citologia , Sistema Nervoso/embriologia , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
16.
Science ; 357(6352): 717-720, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28818950

RESUMO

The sexual differentiation paradigm contends that the female pattern of the reproductive system is established by default because the male reproductive tracts (Wolffian ducts) in the female degenerate owing to a lack of androgen. Here, we discovered that female mouse embryos lacking Coup-tfII (chicken ovalbumin upstream promoter transcription factor II) in the Wolffian duct mesenchyme became intersex-possessing both female and male reproductive tracts. Retention of Wolffian ducts was not caused by ectopic androgen production or action. Instead, enhanced phosphorylated extracellular signal-regulated kinase signaling in Wolffian duct epithelium was responsible for the retention of male structures in an androgen-independent manner. We thus suggest that elimination of Wolffian ducts in female embryos is actively promoted by COUP-TFII, which suppresses a mesenchyme-epithelium cross-talk responsible for Wolffian duct maintenance.


Assuntos
Fator II de Transcrição COUP/fisiologia , Genitália Masculina/embriologia , Diferenciação Sexual/fisiologia , Ductos Mesonéfricos/embriologia , Androgênios/metabolismo , Androgênios/farmacologia , Animais , Fator II de Transcrição COUP/genética , Embrião de Mamíferos , Feminino , Masculino , Camundongos , Camundongos Knockout , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Diferenciação Sexual/genética , Transdução de Sinais
17.
Sex Dev ; 11(1): 1-20, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28196369

RESUMO

With each new microarray or RNA-seq experiment, massive quantities of transcriptomic information are generated with the purpose to produce a list of candidate genes for functional analyses. Yet an effective strategy remains elusive to prioritize the genes on these candidate lists. In this review, we outline a prioritizing strategy by taking a step back from the bench and leveraging the rich range of public databases. This in silico approach provides an economical, less biased, and more effective solution. We discuss the publicly available online resources that can be used to answer a range of questions about a gene. Is the gene of interest expressed in the system of interest (using expression databases)? Where else is this gene expressed (using added-value transcriptomic resources)? What pathways and processes is the gene involved in (using enriched gene pathway analysis and mouse knockout databases)? Is this gene correlated with human diseases (using human disease variant databases)? Using mouse fetal testis as an example, our strategies identified 298 genes annotated as expressed in the fetal testis. We cross-referenced these genes to existing microarray data and narrowed the list down to cell-type-specific candidates (35 for Sertoli cells, 11 for Leydig cells, and 25 for germ cells). Our strategies can be customized so that they allow researchers to effectively and confidently prioritize genes for functional analysis.


Assuntos
Internet , Testículo/metabolismo , Animais , Bases de Dados Factuais , Feto/citologia , Feto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/citologia , Células Germinativas/metabolismo , Humanos , Células Intersticiais do Testículo/citologia , Células Intersticiais do Testículo/metabolismo , Masculino , Camundongos , Células de Sertoli/citologia , Células de Sertoli/metabolismo , Testículo/citologia
18.
Development ; 143(20): 3700-3710, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27621062

RESUMO

Testis morphogenesis is a highly orchestrated process involving lineage determination of male germ cells and somatic cell types. Although the origin and differentiation of germ cells are known, the developmental course specific for each somatic cell lineage has not been clearly defined. Here, we construct a comprehensive map of somatic cell lineage progression in the mouse testis. Both supporting and interstitial cell lineages arise from WT1+ somatic progenitor pools in the gonadal primordium. A subpopulation of WT1+ progenitor cells acquire SOX9 expression and become Sertoli cells that form testis cords, whereas the remaining WT1+ cells contribute to progenitor cells in the testis interstitium. Interstitial progenitor cells diversify through the acquisition of HES1, an indication of Notch activation, at the onset of sex determination. HES1+ interstitial progenitors, through the action of Sertoli cell-derived Hedgehog signals, become positive for GLI1. The GLI1+ interstitial cells eventually develop into two cell lineages: steroid-producing fetal Leydig cells and non-steroidogenic cells. The fetal Leydig cell population is restricted by Notch2 signaling from the neighboring somatic cells. The non-steroidogenic progenitor cells retain their undifferentiated state during fetal stage and become adult Leydig cells in post-pubertal testis. These results provide the first lineage progression map that illustrates the sequential establishment of somatic cell populations during testis morphogenesis.


Assuntos
Células-Tronco Adultas/citologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Testículo/embriologia , Testículo/metabolismo , Células-Tronco Adultas/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Imuno-Histoquímica , Células Intersticiais do Testículo/citologia , Células Intersticiais do Testículo/metabolismo , Masculino , Camundongos , Células de Sertoli/citologia , Células de Sertoli/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Tamoxifeno/farmacologia , Fatores de Transcrição HES-1/genética , Fatores de Transcrição HES-1/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo
19.
Stem Cells ; 34(11): 2772-2783, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27350140

RESUMO

In this study, we identify a novel and essential role for the Krüppel-like zinc finger transcription factor GLI-similar 3 (GLIS3) in the regulation of postnatal spermatogenesis. We show that GLIS3 is expressed in gonocytes, spermatogonial stem cells (SSCs) and spermatogonial progenitors (SPCs), but not in differentiated spermatogonia and later stages of spermatogenesis or in somatic cells. Spermatogenesis is greatly impaired in GLIS3 knockout mice. Loss of GLIS3 function causes a moderate reduction in the number of gonocytes, but greatly affects the generation of SSCs/SPCs, and as a consequence the development of spermatocytes. Gene expression profiling demonstrated that the expression of genes associated with undifferentiated spermatogonia was dramatically decreased in GLIS3-deficient mice and that the cytoplasmic-to-nuclear translocation of FOXO1, which marks the gonocyte-to-SSC transition and is necessary for SSC self-renewal, is inhibited. These observations suggest that GLIS3 promotes the gonocyte-to-SSC transition and is a critical regulator of the dynamics of early postnatal spermatogenesis. Stem Cells 2016;34:2772-2783.


Assuntos
Proteínas Repressoras/genética , Espermatócitos/metabolismo , Espermatogênese/genética , Espermatogônias/metabolismo , Células-Tronco/metabolismo , Testículo/metabolismo , Transativadores/genética , Animais , Diferenciação Celular , Proteínas de Ligação a DNA , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transporte Proteico , Proteínas Repressoras/deficiência , Espermatócitos/citologia , Espermatogônias/citologia , Células-Tronco/citologia , Testículo/citologia , Transativadores/deficiência
20.
Biol Reprod ; 93(2): 35, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26108792

RESUMO

Sex-reversal cases in humans and genetic models in mice have revealed that the fate of the bipotential gonad hinges upon the balance between pro-testis SOX9 and pro-ovary beta-catenin pathways. Our central query was: if SOX9 and beta-catenin define the gonad's identity, then what do the gonads become when both factors are absent? To answer this question, we developed mouse models that lack either Sox9, beta-catenin, or both in the somatic cells of the fetal gonads and examined the morphological outcomes and transcriptome profiles. In the absence of Sox9 and beta-catenin, both XX and XY gonads progressively lean toward the testis fate, indicating that expression of certain pro-testis genes requires the repression of the beta-catenin pathway, rather than a direct activation by SOX9. We also observed that XY double knockout gonads were more masculinized than their XX counterpart. To identify the genes responsible for the initial events of masculinization and to determine how the genetic context (XX vs. XY) affects this process, we compared the transcriptomes of Sox9/beta-catenin mutant gonads and found that early molecular changes underlying the XY-specific masculinization involve the expression of Sry and 21 SRY direct target genes, such as Sox8 and Cyp26b1. These results imply that when both Sox9 and beta-catenin are absent, Sry is capable of activating other pro-testis genes and drive testis differentiation. Our findings not only provide insight into the mechanism of sex determination, but also identify candidate genes that are potentially involved in disorders of sex development.


Assuntos
Gônadas/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/fisiologia , Processos de Determinação Sexual/genética , Processos de Determinação Sexual/fisiologia , beta Catenina/genética , beta Catenina/fisiologia , Animais , Sistema Enzimático do Citocromo P-450/genética , Feminino , Masculino , Camundongos , Camundongos Knockout , Gravidez , Ácido Retinoico 4 Hidroxilase , Diferenciação Sexual/genética , Proteína da Região Y Determinante do Sexo/genética , Testículo/embriologia , Testículo/crescimento & desenvolvimento , Transcriptoma/genética , Cromossomo X/genética , Cromossomo Y/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...