Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bipolar Disord ; 24(4): 400-411, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34606159

RESUMO

BACKGROUND: Recently, functional homotopy (FH) architecture, defined as robust functional connectivity (FC) between homotopic regions, has been frequently reported to be altered in MDD patients (MDDs) but with divergent locations. METHODS: In this study, we obtained resting-state functional magnetic resonance imaging (R-fMRI) data from 1004 MDDs (mean age, 33.88 years; age range, 18-60 years) and 898 matched healthy controls (HCs) from an aggregated dataset from 20 centers in China. We focused on interhemispheric function integration in MDDs and its correlation with clinical characteristics using voxel-mirrored homotopic connectivity (VMHC) devised to inquire about FH patterns. RESULTS: As compared with HCs, MDDs showed decreased VMHC in visual, motor, somatosensory, limbic, angular gyrus, and cerebellum, particularly in posterior cingulate gyrus/precuneus (PCC/PCu) (false discovery rate [FDR] q < 0.002, z = -7.07). Further analysis observed that the reduction in SMG and insula was more prominent with age, of which SMG reflected such age-related change in males instead of females. Besides, the reduction in MTG was found to be a male-special abnormal pattern in MDDs. VMHC alterations were markedly related to episode type and illness severity. The higher Hamilton Depression Rating Scale score, the more apparent VMHC reduction in the primary visual cortex. First-episode MDDs revealed stronger VMHC reduction in PCu relative to recurrent MDDs. CONCLUSIONS: We confirmed a significant VMHC reduction in MDDs in broad areas, especially in PCC/PCu. This reduction was affected by gender, age, episode type, and illness severity. These findings suggest that the depressive brain tends to disconnect information exchange across hemispheres.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
2.
Neuropsychiatr Dis Treat ; 17: 3483-3488, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34880617

RESUMO

OBJECTIVE: This study aimed at investigating the correlation between estradiol and sleep apnea among women with major depressive disorders during the perimenopausal and postmenopausal periods. METHODS: A total of 84 perimenopausal and postmenopausal women diagnosed with depression, and who had been subjected to whole-night polysomnography (PSG) were retrospectively studied. They were assigned into two groups based on the presence of OSA (apnea-hypopnea index (AHI)≥5) (OSA vs non-OSA). The correlation between estradiol levels and apnea-hypopnea index were assessed by logistic regression models after adjusting for age, body mass index (BMI), Hamilton Depression Rating Scale (HAMD), Pittsburgh Sleep Quality Index (PSQI), apnea frequency and progesterone. RESULTS: Among the 84 patients, 45.23% had OSA. Estradiol levels were significantly elevated in non-OSA than in OSA patients (p<0.05). Univariate analysis revealed that elevated estradiol levels are associated with reduced odds of OSA (odds ratio [OR] 0.92, 95% confidence interval [CI] 0.875-0.966, p = 0.001). Multivariate analyses showed that low estradiol levels (OR = 0.859, 95% CI 0.826-0.991, p = 0.031), higher HAMD scores (OR = 1.212, 95% CI 1.012-1.453, p = 0.037), higher apnea frequency (OR = 2.493, 95% CI 1.389-4.473, p = 0.002) and higher BMI (OR=1.635, 95% CI 1.136-2.353, p = 0.008) are correlated with OSA. CONCLUSION: The ratio of depressed perimenopausal to postmenopausal women comorbid OSA was high. Higher BMI, low estradiol levels, high apnea frequency and high HAMD scores were correlated with OSA diagnosis and could be potential diagnostic markers for OSA in depressed perimenopausal and postmenopausal women. Reduced estradiol levels were correlated with an increased risk of OSA among depressed perimenopausal and postmenopausal women.

3.
Artigo em Inglês | MEDLINE | ID: mdl-34119573

RESUMO

OBJECTIVE: While gastrointestinal (GI) symptoms are very common in patients with major depressive disorder (MDD), few studies have investigated the neural basis behind these symptoms. In this study, we sought to elucidate the neural basis of GI symptoms in MDD patients by analyzing the changes in regional gray matter volume (GMV) and gray matter density (GMD) in brain structure. METHOD: Subjects were recruited from 13 clinical centers and categorized into three groups, each of which is based on the presence or absence of GI symptoms: the GI symptoms group (MDD patients with at least one GI symptom), the non-GI symptoms group (MDD patients without any GI symptoms), and the healthy control group (HCs). Structural magnetic resonance images (MRI) were collected of 335 patients in the GI symptoms group, 149 patients in the non-GI symptoms group, and 446 patients in the healthy control group. The 17-item Hamilton Depression Rating Scale (HAMD-17) was administered to all patients. Correlation analysis and logistic regression analysis were used to determine if there was a correlation between the altered brain regions and the clinical symptoms. RESULTS: There were significantly higher HAMD-17 scores in the GI symptoms group than that of the non-GI symptoms group (P < 0.001). Both GMV and GMD were significant different among the three groups for the bilateral superior temporal gyrus, bilateral middle temporal gyrus, left lingual gyrus, bilateral caudate nucleus, right Fusiform gyrus and bilateral Thalamus (GRF correction, cluster-P < 0.01, voxel-P < 0.001). Compared to the HC group, the GI symptoms group demonstrated increased GMV and GMD in the bilateral superior temporal gyrus, and the non-GI symptoms group demonstrated an increased GMV and GMD in the right superior temporal gyrus, right fusiform gyrus and decreased GMV in the right Caudate nucleus (GRF correction, cluster-P < 0.01, voxel-P < 0.001). Compared to the non-GI symptoms group, the GI symptoms group demonstrated significantly increased GMV and GMD in the bilateral thalamus, as well as decreased GMV in the bilateral superior temporal gyrus and bilateral insula lobe (GRF correction, cluster-P < 0.01, voxel-P < 0.001). While these changed brain areas had significantly association with GI symptoms (P < 0.001), they were not correlated with depressive symptoms (P > 0.05). Risk factors for gastrointestinal symptoms in MDD patients (p < 0.05) included age, increased GMD in the right thalamus, and decreased GMV in the bilateral superior temporal gyrus and left Insula lobe. CONCLUSION: MDD patients with GI symptoms have more severe depressive symptoms. MDD patients with GI symptoms exhibited larger GMV and GMD in the bilateral thalamus, and smaller GMV in the bilateral superior temporal gyrus and bilateral insula lobe that were correlated with GI symptoms, and some of them and age may contribute to the presence of GI symptoms in MDD patients.


Assuntos
Transtorno Depressivo Maior/patologia , Substância Cinzenta/patologia , Dor Abdominal/etiologia , Dor Abdominal/psicologia , Adulto , Encéfalo/patologia , Escalas de Graduação Psiquiátrica Breve , Núcleo Caudado/patologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Lobo Temporal/patologia , Tálamo/patologia
4.
Front Hum Neurosci ; 15: 634113, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33658914

RESUMO

Anxious major depressive disorder is a common subtype of major depressive disorder; however, its unique neural mechanism is not well-understood currently. Using multimodal MRI data, this study examined common and specific alterations of amygdala subregions between patients with and without anxiety. No alterations were observed in the gray matter volume or intra-region functional integration in either patient group. Compared with the controls, both patient groups showed decreased functional connectivity between the left superficial amygdala and the left putamen, and between the right superficial amygdala and the bilateral anterior cingulate cortex and medial orbitofrontal cortex, while only patients with anxiety exhibited decreased activity in the bilateral laterobasal and superficial amygdala. Moreover, the decreased activity correlated negatively with the Hamilton depression scale scores in the patients with anxiety. These findings provided insights into the pathophysiologic processes of anxious major depressive disorder and may help to develop new and effective treatment programs.

5.
J Affect Disord ; 284: 217-228, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33609956

RESUMO

BACKGROUND: Functional specialization is a feature of human brain for understanding the pathophysiology of major depressive disorder (MDD). The degree of human specialization refers to within and cross hemispheric interactions. However, most previous studies only focused on interhemispheric connectivity in MDD, and the results varied across studies. Hence, brain functional connectivity asymmetry in MDD should be further studied. METHODS: Resting-state fMRI data of 753 patients with MDD and 451 healthy controls were provided by REST-meta-MDD Project. Twenty-five project contributors preprocessed their data locally with the Data Processing Assistant State fMRI software and shared final indices. The parameter of asymmetry (PAS), a novel voxel-based whole-brain quantitative measure that reflects inter- and intrahemispheric asymmetry, was reported. We also examined the effects of age, sex and clinical variables (including symptom severity, illness duration and three depressive phenotypes). RESULTS: Compared with healthy controls, patients with MDD showed increased PAS scores (decreased hemispheric specialization) in most of the areas of default mode network, control network, attention network and some regions in the cerebellum and visual cortex. Demographic characteristics and clinical variables have significant effects on these abnormalities. LIMITATIONS: Although a large sample size could improve statistical power, future independent efforts are needed to confirm our results. CONCLUSIONS: Our results highlight the idea that many brain networks contribute to broad clinical pathophysiology of MDD, and indicate that a lateralized, efficient and economical brain information processing system is disrupted in MDD. These findings may help comprehensively clarify the pathophysiology of MDD in a new hemispheric specialization perspective.


Assuntos
Transtorno Depressivo Maior , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Transtorno Depressivo Maior/diagnóstico por imagem , Dominância Cerebral , Humanos , Imageamento por Ressonância Magnética
6.
Proc Natl Acad Sci U S A ; 116(18): 9078-9083, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30979801

RESUMO

Major depressive disorder (MDD) is common and disabling, but its neuropathophysiology remains unclear. Most studies of functional brain networks in MDD have had limited statistical power and data analysis approaches have varied widely. The REST-meta-MDD Project of resting-state fMRI (R-fMRI) addresses these issues. Twenty-five research groups in China established the REST-meta-MDD Consortium by contributing R-fMRI data from 1,300 patients with MDD and 1,128 normal controls (NCs). Data were preprocessed locally with a standardized protocol before aggregated group analyses. We focused on functional connectivity (FC) within the default mode network (DMN), frequently reported to be increased in MDD. Instead, we found decreased DMN FC when we compared 848 patients with MDD to 794 NCs from 17 sites after data exclusion. We found FC reduction only in recurrent MDD, not in first-episode drug-naïve MDD. Decreased DMN FC was associated with medication usage but not with MDD duration. DMN FC was also positively related to symptom severity but only in recurrent MDD. Exploratory analyses also revealed alterations in FC of visual, sensory-motor, and dorsal attention networks in MDD. We confirmed the key role of DMN in MDD but found reduced rather than increased FC within the DMN. Future studies should test whether decreased DMN FC mediates response to treatment. All R-fMRI indices of data contributed by the REST-meta-MDD consortium are being shared publicly via the R-fMRI Maps Project.


Assuntos
Encéfalo/fisiopatologia , Transtorno Depressivo Maior/fisiopatologia , Mapeamento Encefálico/métodos , China , Conectoma/métodos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/metabolismo , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Vias Neurais/fisiopatologia , Descanso/fisiologia
7.
J Mol Neurosci ; 56(2): 491-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25645683

RESUMO

The pathogenesis of Alzheimer's disease (AD) is very complex and there are currently no significant treatments for the disease. Caspase-8 is known to be involved in neuronal apoptosis. To explore a possible molecular mechanisms involved in AD pathology, this study investigated the effect of caspase-8 knockdown on amyloid-ß 1-40 (Aß1-40)-induced apoptosis in PC12 cells. The proliferation of PC12 cells was significantly inhibited in Aß-treated cells, and a high fraction of the cells underwent apoptosis in a dose- and time-dependent manner. Transfection of caspase-8 small interfering RNA (siRNA) resulted in reduced apoptosis following Aß1-40 treatment. The activation of caspase-3, caspase-8, and caspase-9 was stimulated by Aß1-40, an effect that was also significantly reduced by caspase-8 siRNA. Knockdown of caspase-8 increased the phosphorylation of the signaling molecules AKT and ERK1/2 relative to cells treated with Aß1-40 alone. Caspase-8 is an important effector molecule involved in apoptosis induced by Aß1-40 and is likely involved in AD pathology. This study suggests that targeted inhibition of caspase-8 may be a new therapeutic for preventing neuronal apoptosis and inhibiting the progression of AD.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Apoptose , Caspase 8/metabolismo , Fragmentos de Peptídeos/toxicidade , Animais , Caspase 3/metabolismo , Caspase 8/genética , Caspase 9/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Células PC12 , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...