Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cancer ; 15(10): 3140-3150, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706918

RESUMO

The conventional treatment strategies for patients with metastatic colorectal cancer (mCRC) are predominantly guided by the status of RAS and BRAF mutations. Although patients may exhibit analogous pathological characteristics and undergo similar treatment regimens, notable disparities in their prognostic outcomes can be observed. Therefore, tissue and plasma samples from 40 mCRC patients underwent next-generation sequencing targeting 425 cancer-relevant genes. Genomic variations and canonical oncogenic pathways were investigated for their prognostic effects in association with progression-free survival (PFS) of these patients. We found that patients with BRCA2 and KMT2A mutations exhibited worse prognostic outcomes after chemotherapy-based treatment (univariate, P < 0.01). Further pathway analysis indicated that alterations in the homologous recombination pathway and in the KMT2A signaling network were also significantly associated with shortened PFS (univariate, P < 0.01). Additionally, mutation signature analysis showed that patients with higher proportions of defective mismatch repair (dMMR)-related mutational signatures. Had a worse prognosis (univariate, P = 0.02). KMT2A mutations (hazard ratio [HR], 4.47; 95% confidence interval [CI], 1-19.93; P =0.050) and dMMR signature proportions (HR, 3.57; 95% CI, 1.42-8.96; P = 0.007) remained independently associated with PFS after multivariate analysis and the results were further externally validated. These findings may enhance our understanding of this disease and may potentially facilitate the optimization of its treatment approaches.

2.
Rice (N Y) ; 17(1): 16, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374238

RESUMO

High temperature during grain filling considerably reduces yield and quality in rice, but its molecular mechanisms are not fully understood. We investigated the functions of a seed preferentially expressed Aux/IAA gene, OsIAA29, under high temperature-stress in grain filling using CRISPR/Cas9, RNAi, and overexpression. We observed that the osiaa29 had a higher percentage of shrunken and chalkiness seed, as well as lower 1000-grain weight than ZH11 under high temperature. Meanwhile, the expression of OsIAA29 was induced and the IAA content was remarkably reduced in the ZH11 seeds under high temperature. In addition, OsIAA29 may enhance the transcriptional activation activity of OsARF17 through competition with OsIAA21 binding to OsARF17. Finally, chromatin immunoprecipitation quantitative real-time PCR (ChIP-qPCR) results proved that OsARF17 regulated expression of several starch and protein synthesis related genes (like OsPDIL1-1, OsSS1, OsNAC20, OsSBE1, and OsC2H2). Therefore, OsIAA29 regulates seed development in high temperature through competition with OsIAA21 in the binding to OsARF17, mediating auxin signaling pathway in rice. This study provides a theoretical basis and gene resources for auxin signaling and effective molecular design breeding.

3.
Nat Plants ; 9(11): 1848-1861, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37814022

RESUMO

Prevention of autonomous division of the egg apparatus and central cell in a female gametophyte before fertilization ensures successful reproduction in flowering plants. Here we show that rice ovules of Polycomb repressive complex 2 (PRC2) Osfie1 and Osfie2 double mutants exhibit asexual embryo and autonomous endosperm formation at a high frequency, while ovules of single Osfie2 mutants display asexual pre-embryo-like structures at a lower frequency without fertilization. Earlier onset, higher penetrance and better development of asexual embryos in the double mutants compared with those in Osfie2 suggest that the autonomous endosperm facilitated asexual embryo development. Transcriptomic analysis showed that male genome-expressed OsBBM1 and OsWOX8/9 were activated in the asexual embryos. Similarly, the maternal alleles of the paternally expressed imprinted genes were activated in the autonomous endosperm, suggesting that the egg apparatus and central cell convergently adopt PRC2 to maintain the non-dividing state before fertilization, possibly through silencing of the maternal alleles of male genome-expressed genes.


Assuntos
Proteínas de Arabidopsis , Oryza , Complexo Repressor Polycomb 2/genética , Proteínas de Arabidopsis/metabolismo , Oryza/metabolismo , Endosperma/genética , Endosperma/metabolismo , Mutação , Sementes , Regulação da Expressão Gênica de Plantas
4.
Zhonghua Nan Ke Xue ; 29(2): 138-143, 2023 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-37847085

RESUMO

OBJECTIVE: To explore the clinical effect of multiple precision behavioral therapy (MPBT) on mild to moderate stress urinary incontinence (SUI) with female sexual dysfunction (FSD) in women. METHODS: We randomly divided 90 female patients with mild to moderate SUI with FSD into three groups of an equal number: control group A, control group B and an MPBT group, treated by electrical stimulation, Kegel training and MPBT, respectively, all for 8 weeks. Using International Consultation on Incontinence Questionnaire-Short Form (ICIQ-SF), Incontinence Impact Questionnaire (IIQ-7), Female Sexual Function Indexes (FSFI) and Glazer protocol, we evaluated the clinical effects, recorded the cost of treatment, and compared them among the three groups of patients. RESULTS: Totally, 87 of the patients completed the treatment, 27 in control group A, 30 in control group B and 30 in the MPBT group. There was no significant difference in the baseline data among the three groups (P > 0.05). ICIQ-SF and IIQ-7 scores, FSFI and Glazer values were remarkably improved in the MPBT group after treatment (P < 0.05). The therapeutic effect was significantly better and the treatment cost markedly lower in the MPBT than in the control groups (P < 0.05). CONCLUSION: Multiple precision behavioral therapy can effectively improve the clinical symptoms of mild to moderate stress urinary incontinence and sexual dysfunction in women, with low cost and high safety.


Assuntos
Disfunções Sexuais Fisiológicas , Incontinência Urinária por Estresse , Incontinência Urinária , Feminino , Humanos , Incontinência Urinária por Estresse/terapia , Qualidade de Vida , Terapia Comportamental , Resultado do Tratamento
5.
Front Neurol ; 14: 1103374, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064175

RESUMO

Objective: As the physical activator of natriuretic peptides, corin has been associated with stroke, but the underlying mechanism is not very clear. Here, we examined whether the CORIN promoter's methylation, an epigenetic DNA modification, was associated with the risk of stroke in two independent samples. Methods: A total of 1771 participants including 853 stroke cases and 918 healthy controls were included as a discovery sample and 2,498 community members with 10 years of follow-up were included as a replication sample. DNA methylation of the CORIN promoter was quantified by target bisulfite sequencing in both samples. We first examined the single CpG association, followed by a gene-based analysis of the joint association between multiple CpG methylation and stroke, adjusting for conventional risk factors. Results: The single CpG association analysis found that hypermethylation at all of the 9 CpG sites assayed was significantly associated with lower odds of prevalent stroke in the discovery sample (all p < 0.05), and three of them located at Chr4:47840038 (HR = 0.74, p = 0.015), Chr4:47839941 (HR = 0.80, p = 0.047), and Chr4:47839933 (HR = 0.82, p = 0.050) were also significantly associated with incident stroke in the replication sample. The gene-based association analysis found that DNA methylation of the 9 CpG sites at the CORIN promoter was jointly associated with stroke in both samples (all p < 0.05). Conclusion: DNA methylation levels of the CORIN gene promoter were lower in stroke patients and predicted a higher risk of incident stroke in Chinese adults. The underlying causality warranted further investigation.

6.
Genes (Basel) ; 14(3)2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-36980928

RESUMO

Understanding the molecular mechanisms of seed germination and seedling growth is vital for mining functional genes for the improvement of plant drought in a desert. Tamarix hispida is extremely resistant to drought and soil salinity perennial shrubs or trees. This study was the first to investigate the protein abundance profile of the transition process during the processes of T. hispida seed germination and seedling growth using label-free proteomics approaches. Our data suggested that asynchronous regulation of transcriptomics and proteomics occurs upon short-term seed germination and seedling growth of T. hispida. Enrichment analysis revealed that the main differentially abundant proteins had significant enrichment in stimulus response, biosynthesis, and metabolism. Two delta-1-pyrroline-5-carboxylate synthetases (P5CS), one Ycf3-interacting protein (Y3IP), one low-temperature-induced 65 kDa protein-like molecule, and four peroxidases (PRX) were involved in both water deprivation and hyperosmotic salinity responses. Through a comparative analysis of transcriptomics and proteomics, we found that proteomics may be better at studying short-term developmental processes. Our results support the existence of several mechanisms that enhance tolerance to salinity and drought stress during seedling growth in T. hispida.


Assuntos
Plântula , Tamaricaceae , Plântula/genética , Germinação/genética , Tamaricaceae/genética , Tamaricaceae/metabolismo , Proteoma/genética , Proteoma/metabolismo , Secas , Salinidade , Sementes
7.
Zhonghua Nan Ke Xue ; 29(5): 420-425, 2023 May.
Artigo em Chinês | MEDLINE | ID: mdl-38602758

RESUMO

OBJECTIVE: To investigate the application effect of functional acupoint electrical stimulation combined with tadara irregular administration in middle-aged and elderly patients with erectile dysfunction (ED), and to provide reference for clinical treatment. METHODS: A total of 40 middle-aged and elderly patients with ED admitted to the pelvic floor Center of our hospital from March 2021 to March 2023 were randomly divided into two groups with 20 cases in each group.The control group was treated with tadalafil regularly, and the observation group was treated with functional acupoint electrical stimulation on the basis of this treatment. The total course of treatment was 6 weeks.The clinical efficacy of the two groups was compared. The therapeutic efficacy was evaluated by the International Erectile Function Index (IIEF-5), penile hardness score (EHS), serum total testosterone (TT) level, sexual satisfaction scale (SS) and pelvic floor electromyography, and the occurrence of adverse events was recorded. RESULTS: The total effective rate of the observation group was significantly higher than that of the control group (90% vs 70%, P < 0.05). After 6 weeks of treatment, both groups showed improvements in IIEF-5, EHS, SS, and TT compared to before treatment (P < 0.01). However, the improvement in the observation group was significantly better than that in the control groupï¼»IIEF-5: (22.13±2.11) vs (19.69±2.04), EHS: (3.68±0.47) vs (2.89±0.60), SS: (77.41±7.59) vs (70.32±7.28), TT: (13.43±3.89) nmol/L vs (8.85±3.02) nmol/L, all P < 0.01ï¼½; There were no significant changes in pelvic floor muscle electromyography values in the control group before and after treatment (P > 0.05), while in the observation group, pelvic floor muscle electromyography values (PFMV) in the pre-resting phase, fast muscle (Type II muscle) phase, slow muscle (Type I muscle) phase, endurance testing phase, and post-resting phase all improved compared to before treatment and were superior to the control group (P < 0.05). CONCLUSION: Functional acupoint electrical stimulation combined with tadara irregular administration can improve the therapeutic effect of middle-aged and elderly patients with ED, improve pelvic floor function, safe and reliable.


Assuntos
Disfunção Erétil , Idoso , Masculino , Pessoa de Meia-Idade , Humanos , Disfunção Erétil/terapia , Tadalafila/uso terapêutico , Pontos de Acupuntura , Estimulação Elétrica , Eletromiografia
8.
PLoS One ; 17(10): e0274108, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36260630

RESUMO

The use of active suspension for vehicle height adjustment has problems of high cost, high energy consumption, slow response, and complex structure. This paper proposes a new method for adjusting the vehicle body using the damping asymmetric characteristic of semi-active suspensions, which is based on the idea that the dampers with damping asymmetric characteristics will cause a change in the mean position of the vehicle body vibration. To verify the feasibility of this method, a single-wheel vehicle model containing asymmetric damping is established. The system's responses under the sinusoidal and random roads excitation are obtained by the fourth-order Runge-Kutta method, the influences of key parameters on the vehicle body's shifting height are analyzed, and the mechanism of vehicle body's shift is explained from the perspective of energy conservation. Then a vehicle body height controller based on third-order linear active disturbance rejection control (LADRC) is designed. Simulation results show that the proposed method for controlling the vehicle height with asymmetric damping can quickly adjust the vehicle to the expected height whether under the sinusoidal road or random road. In addition, no additional hardware and energy consumption are required, providing a new idea for vehicle height control.


Assuntos
Vibração , Simulação por Computador
9.
Sensors (Basel) ; 22(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36298232

RESUMO

This paper proposes a deep reinforcement learning (DRL)-based algorithm in the path-tracking controller of an unmanned vehicle to autonomously learn the path-tracking capability of the vehicle by interacting with the CARLA environment. To solve the problem of the high estimation of the Q-value of the DDPG algorithm and slow training speed, the controller adopts the deep deterministic policy gradient algorithm of the double critic network (DCN-DDPG), obtains the trained model through offline learning, and sends control commands to the unmanned vehicle to make the vehicle drive according to the determined route. This method aimed to address the problem of unmanned-vehicle path tracking. This paper proposes a Markov decision process model, including the design of state, action-and-reward value functions, and trained the control strategy in the CARLA simulator Town04 urban scene. The tracking task was completed under various working conditions, and its tracking effect was compared with the original DDPG algorithm, model predictive control (MPC), and pure pursuit. It was verified that the designed control strategy has good environmental adaptability, speed adaptability, and tracking performance.

10.
BMC Genomics ; 23(1): 109, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35135479

RESUMO

BACKGROUND: Seed germination is a series of ordered physiological and morphogenetic processes and a critical stage in plant life cycle. Tamarix hispida is one of the most salt-tolerant plant species; however, its seed germination has not been analysed using combined transcriptomics and metabolomics. RESULTS: Transcriptomic sequencing and widely targeted metabolomics were used to detect the transcriptional metabolic profiles of T. hispida at different stages of seed germination and young seedling growth. Transcriptomics showed that 46,538 genes were significantly altered throughout the studied development period. Enrichment study revealed that plant hormones, such as auxin, ABA, JA and SA played differential roles at varying stages of seed germination and post-germination. Metabolomics detected 1022 metabolites, with flavonoids accounting for the highest proportion of differential metabolites. Combined analysis indicated that flavonoid biosynthesis in young seedling growth, such as rhoifolin and quercetin, may improve the plant's adaptative ability to extreme desert environments. CONCLUSIONS: The differential regulation of plant hormones and the accumulation of flavonoids may be important for the seed germination survival of T. hispida in response to salt or arid deserts. This study enhanced the understanding of the overall mechanism in seed germination and post-germination. The results provide guidance for the ecological value and young seedling growth of T. hispida.


Assuntos
Germinação , Tamaricaceae , Regulação da Expressão Gênica de Plantas , Germinação/genética , Metabolômica , Plântula/genética , Sementes/genética , Tamaricaceae/genética , Transcriptoma
11.
Plant Cell ; 34(5): 1912-1932, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35171272

RESUMO

Grain chalkiness reduces the quality of rice (Oryza sativa) and is a highly undesirable trait for breeding and marketing. However, the underlying molecular cause of chalkiness remains largely unknown. Here, we cloned the F-box gene WHITE-CORE RATE 1 (WCR1), which negatively regulates grain chalkiness and improves grain quality in rice. A functional A/G variation in the promoter region of WCR1 generates the alleles WCR1A and WCR1G, which originated from tropical japonica and wild rice Oryza rufipogon, respectively. OsDOF17 is a transcriptional activator that binds to the AAAAG cis-element in the WCR1A promoter. WCR1 positively affects the transcription of the metallothionein gene MT2b and interacts with MT2b to inhibit its 26S proteasome-mediated degradation, leading to decreased reactive oxygen species production and delayed programmed cell death in rice endosperm. This, in turn, leads to reduced chalkiness. Our findings uncover a molecular mechanism underlying rice chalkiness and identify the promising natural variant WCR1A, with application potential for rice breeding.


Assuntos
Endosperma , Oryza , Grão Comestível/genética , Endosperma/genética , Regulação da Expressão Gênica de Plantas/genética , Homeostase/genética , Oryza/genética , Oryza/metabolismo , Oxirredução
12.
Plant Physiol ; 188(1): 460-476, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34730827

RESUMO

Lateral branches such as shoot and panicle are determining factors and target traits for rice (Oryza sativa L.) yield improvement. Cytokinin promotes rice lateral branching; however, the mechanism underlying the fine-tuning of cytokinin homeostasis in rice branching remains largely unknown. Here, we report the map-based cloning of RICE LATERAL BRANCH (RLB) encoding a nuclear-localized, KNOX-type homeobox protein from a rice cytokinin-deficient mutant showing more tillers, sparser panicles, defected floret morphology as well as attenuated shoot regeneration from callus. RLB directly binds to the promoter and represses the transcription of OsCKX4, a cytokinin oxidase gene with high abundance in panicle branch meristem. OsCKX4 over-expression lines phenocopied rlb, which showed upregulated OsCKX4 levels. Meanwhile, RLB physically binds to Polycomb repressive complex 2 (PRC2) components OsEMF2b and co-localized with H3K27me3, a suppressing histone modification mediated by PRC2, in the OsCKX4 promoter. We proposed that RLB recruits PRC2 to the OsCKX4 promoter to epigenetically repress its transcription, which suppresses the catabolism of cytokinin, thereby promoting rice lateral branching. Moreover, antisense inhibition of OsCKX4 under the LOG promoter successfully increased panicle size and spikelet number per plant without affecting other major agronomic traits. This study provides insight into cytokinin homeostasis, lateral branching in plants, and also promising target genes for rice genetic improvement.


Assuntos
Meristema/genética , Meristema/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/genética , Oryza/metabolismo , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Metilação/efeitos dos fármacos , Plantas Geneticamente Modificadas
13.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830102

RESUMO

Gibberellins (GAs) are diterpenoid phytohormones regulating various aspects of plant growth and development, such as internode elongation and seed germination. Although the GA biosynthesis pathways have been identified, the transcriptional regulatory network of GA homeostasis still remains elusive. Here, we report the functional characterization of a GA-inducible OsABF1 in GA biosynthesis underpinning plant height and seed germination. Overexpression of OsABF1 produced a typical GA-deficient phenotype with semi-dwarf and retarded seed germination. Meanwhile, the phenotypes could be rescued by exogenous GA3, suggesting that OsABF1 is a key regulator of GA homeostasis. OsABF1 could directly suppress the transcription of green revolution gene SD1, thus reducing the endogenous GA level in rice. Moreover, OsABF1 interacts with and transcriptionally antagonizes to the polycomb repression complex component OsEMF2b, whose mutant showed as similar but more severe phenotype to OsABF1 overexpression lines. It is suggested that OsABF1 recruits RRC2-mediated H3K27me3 deposition on the SD1 promoter, thus epigenetically silencing SD1 to maintain the GA homeostasis for growth and seed germination. These findings shed new insight into the functions of OsABF1 and regulatory mechanism underlying GA homeostasis in rice.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação , Giberelinas/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Oryza/genética , Proteínas de Plantas/genética , Sementes/genética
14.
Dalton Trans ; 50(11): 3867-3873, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33666605

RESUMO

Vanadium-based oxides with relatively high theoretical capacity have been regarded as promising electrode materials for boosting energy conversion and storage. However, their poor electrical conductivity usually leads to unsatisfied performance and poor cycling stability. Herein, uniform V2O3/N-doped carbon hollow nanospheres (V2O3/NC HSs) with mesoporous structures were successfully synthesized through a melamine-assisted simple hydrothermal reaction and carbonization treatment. We demonstrated that the introduction of melamine played an essential role in the construction of V2O3/NC HSs. Benefitting from the special mesoporous structure and large specific surface area, the as-obtained sample exhibited enhanced conductivity and structural stability. As a proof of concept, well-defined V2O3/NC HSs exhibited excellent cycling stability and rate performance for sodium-ion batteries, and achieved a discharge capacity of 263.8 mA h g-1 at a current density of 1.0 A g-1 after 1000 cycles, one of the best performances of V-based compounds. The enhanced performance could be attributed to the synergistic effect of the hollow structure and surface carbon coating. The present work describes the design of the morphology and structure of vanadium-based oxides for energy storage devices.

15.
Infect Immun ; 89(5)2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33593890

RESUMO

Haemaphysalis longicornis is a blood-feeding hard tick known for transmitting a variety of pathogens, including Babesia How the parasites in the imbibed blood become anchored in the midgut of ticks is still unknown. Leucine-rich repeat domain (LRR)-containing protein, which is associated with the innate immune reaction and conserved in many species, has been detected in H. longicornis and has previously been indicated in inhibiting the growth of Babesia gibsoni However, the detailed mechanism is unknown. In this study, one of the ligands for LRR from H. longicornis (HlLRR) was identified in Babesia microti, designated BmActin, using glutathione transferase (GST) pulldown experiments and immunofluorescence assays. Moreover, RNA interference of HlLRR led to a decrease in the BmActin mRNA expression in the midgut of fully engorged ticks which fed on B. microti-infected mice. We also found that the expression level of the innate immune molecules in H. longicornis, defensin, antimicrobial peptides (AMPs), and lysozyme, were downregulated after the knockdown of HlLRR. However, subolesin expression was upregulated. These results indicate that HlLRR not only recognizes BmActin but may also modulate innate immunity in ticks to influence Babesia growth, which will further benefit the development of anti-Babesia vaccines or drugs.


Assuntos
Babesia microti/fisiologia , Interações Hospedeiro-Parasita , Ixodidae/parasitologia , Proteínas/metabolismo , Animais , Vetores Aracnídeos/parasitologia , Babesiose/imunologia , Babesiose/parasitologia , Modelos Animais de Doenças , Expressão Gênica , Interações Hospedeiro-Parasita/imunologia , Imunidade Inata , Ixodidae/imunologia , Proteínas de Repetições Ricas em Leucina , Ligantes , Camundongos
16.
J Exp Bot ; 72(8): 2947-2964, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33476364

RESUMO

High temperature often leads to failure of grain filling in rice (Oryza sativa) causing yield loss, but the underlying mechanisms are still not elucidated. Here, we report that two genes encoding seed-specific NAM/ATAF/CUC (NAC) domain transcription factors, ONAC127 and ONAC129, are responsive to heat stress and involved in the grain filling process of rice. ONAC127 and ONAC129 are dominantly expressed in the pericarp and can form a heterodimer during rice grain filling. CRISPR/Cas9 induced mutants and overexpression lines were then generated to investigate the function of these two transcription factors. Interestingly, both knock-out and overexpression plants showed incomplete grain filling and shrunken grains, which became more severe under heat stress. Transcriptome analysis revealed that ONAC127 and ONAC129 mainly regulate stimulus response and nutrient transport. ChIP-seq analysis identified that the direct target genes of ONAC127 and ONAC129 in developing rice seeds include monosaccharide transporter gene OsMST6, sugar transporter gene OsSWEET4, calmodulin-like protein gene OsMSR2 and AP2/ERF factor gene OsEATB. These results suggest that ONAC127 and ONAC129 regulate grain filling by affecting sugar transportation and abiotic stress responses. Overall, this study demonstrates a transcriptional regulatory network with ONAC127 and ONAC129 coordinating multiple pathways to modulate seed development and heat stress responses at rice reproductive stages.


Assuntos
Fatores de Transcrição de Choque Térmico , Oryza , Proteínas de Plantas , Sementes/crescimento & desenvolvimento , Grão Comestível/genética , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Resposta ao Choque Térmico/genética , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
Plant Biotechnol J ; 18(4): 916-928, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31529568

RESUMO

Argonaute (AGO) proteins and small RNAs (sRNAs) are core components of the RNA-induced silencing complex (RISC). It has been reported that miRNAs regulate plant height and grain size in rice, but which AGO is involved in grain size regulation remains unclear. Here, we report that enhanced expression of OsAGO17, a putative AGO protein, could improve grain size and weight and promote stem development in rice. Cytological evidence showed that these effects are mainly caused by alteration of cell elongation. Expression analyses showed that OsAGO17 was highly expressed in young panicles and nodes, which was consistent with the expression pattern of OsmiR397b. SRNA sequencing, stem-loop RT-PCR and sRNA blotting showed that the expression of OsmiR397b was reduced in ago17 and enhanced in the OsAGO17 OE lines. Four OsmiR397b target laccase (LAC) genes showed complementary expression patterns with OsAGO17 and OsmiR397b. Combined with the results of immunoprecipitation (IP) analysis, we suggested that OsAGO17 formed an RISC with OsmiR397b and affected rice development by suppression of LAC expression. In conclusion, OsAGO17 might be a critical protein in the sRNA pathway and positively regulates grain size and weight in rice.


Assuntos
Proteínas Argonautas/genética , MicroRNAs/genética , Oryza/genética , Proteínas de Plantas/genética , Sementes/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Oryza/crescimento & desenvolvimento , RNA de Plantas/genética
18.
J Exp Bot ; 70(15): 3765-3780, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31211389

RESUMO

Starch and storage proteins, the primary storage substances of cereal endosperm, are a major source of food for humans. However, the transcriptional regulatory networks of the synthesis and accumulation of storage substances remain largely unknown. Here, we identified a rice endosperm-specific gene, NF-YC12, that encodes a putative nuclear factor-Y transcription factor subunit C. NF-YC12 is expressed in the aleurone layer and starchy endosperm during grain development. Knockout of NF-YC12 significantly decreased grain weight as well as altering starch and protein accumulation and starch granule formation. RNA-sequencing analysis revealed that in the nf-yc12 mutant genes related to starch biosynthesis and the metabolism of energy reserves were enriched in the down-regulated category. In addition, starch and protein contents in seeds differed between NF-YC12-overexpression lines and the wild-type. NF-YC12 was found to interact with NF-YB1. ChIP-qPCR and yeast one-hybrid assays showed that NF-YC12 regulated the rice sucrose transporter OsSUT1 in coordination with NF-YB1 in the aleurone layer. In addition, NF-YC12 was directly bound to the promoters of FLO6 (FLOURY ENDOSPERM6) and OsGS1;3 (glutamine synthetase1) in developing endosperm. This study demonstrates a transcriptional regulatory network involving NF-YC12, which coordinates multiple pathways to regulate endosperm development and the accumulation of storage substances in rice seeds.


Assuntos
Oryza/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Fatores de Transcrição/metabolismo , Fator de Ligação a CCAAT/genética , Fator de Ligação a CCAAT/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Proteínas de Plantas/genética , Sementes/genética , Fatores de Transcrição/genética
19.
Plant Sci ; 280: 219-227, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30824000

RESUMO

Grain size and shape are important factors in determining the grain yield. In this study, OsNF-YC10, a member of the NF-Y transcription factor family encoding a putative histone transcription factor, was cloned and characterized. qRT-PCR and mRNA in situ hybridization analysis revealed that OsNF-YC10 was highly expressed in endosperm and spikelet hull at late developmental stages. The results showed that OsNF-YC10 was a nuclear protein showing transcription activation activity. The osnf-yc10 lines, produced using CRISPR/Cas9 technology, showed narrow, thin and light grains. Cytological experiments revealed significantly reduced cell number of spikelet hull in osnf-yc10 lines compared with that in WT. Narrow, thin, and light grains were found consistently in OsNF-YC10 RNAi transgenic lines. Moreover, the number of cells decreased in the grain-width direction than WT. These results indicated that OsNF-YC10 plays an important role in determining grain size and shape. OsNF-YC10 was further revealed to influence the expression of GW8 (a positive regulator of grain width), GW7 (a negative regulator of grain width) and cell cycle-regulated genes CYCD4, CYCA2.1, CYCB2.1, CYCB2.2, E2F2. Taken together, it is suggested that OsNF-YC10 regulates the grains size and shape by influencing the cell proliferation of spikelet hulls.


Assuntos
Proliferação de Células , Regulação da Expressão Gênica de Plantas , Oryza/genética , Fatores de Transcrição/metabolismo , Núcleo Celular/metabolismo , Endosperma/genética , Endosperma/crescimento & desenvolvimento , Endosperma/fisiologia , Especificidade de Órgãos , Oryza/crescimento & desenvolvimento , Oryza/fisiologia , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Interferência de RNA , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Fatores de Transcrição/genética , Ativação Transcricional
20.
Plant Sci ; 267: 157-167, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29362094

RESUMO

An ideal plant height is essential for crop yield. Some Polycomb group (PcG) genes mutants exhibit a dwarf phenotype in rice. To determine how PcG genes regulate plant height, we investigated the phenotypes of the emf2b mutant and OsEMF2b, OsFIE2 and OsCLF RNAi transgenic plants; they all exhibited dwarf phenotype. Further analyses indicated that stem elongation at jointing stage was seriously inhibited in emf2b and RNAi transgenic plants. Reduced cell expansion and cell division of stem caused significant reduction of stem length during mature period of OsEMF2b, OsFIE2 and OsCLF RNAi transgenic plants. Transcription analysis revealed that cell division, cell expansion and plant hormones related genes differentially expressed between emf2b and WT. In addition, PcG genes mutants weakened GA signal and GA concentration and leaded to suppresseion of plant height. Analysis of differentially expressed genes revealed that 109 up-regulated and 19 down-regulated genes were identified in both emf2b and fie2. H3K27me3-modified sites were observed in 95 of the 109 up-regulated genes, and some of them were up-regulated in OsFIE2, OsCLF and OsEMF2b RNAi transgenic plants, and their H3K27me3 levels were reduced in emf2b. Moreover, OsEMF2b interacted with OsCLF. Therefore, we speculated that these PcG genes, OsFIE2, OsCLF and OsEMF2b, may work as a PRC2 to regulate rice height.


Assuntos
Oryza/genética , Proteínas de Plantas/genética , Proteínas do Grupo Polycomb/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Proteínas do Grupo Polycomb/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...