Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neural Netw ; 171: 159-170, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38091760

RESUMO

Nuclei detection is one of the most fundamental and challenging problems in histopathological image analysis, which can localize nuclei to provide effective computer-aided cancer diagnosis, treatment decision, and prognosis. The fully-supervised nuclei detector requires a large number of nuclei annotations on high-resolution digital images, which is time-consuming and needs human annotators with professional knowledge. In recent years, weakly-supervised learning has attracted significant attention in reducing the labeling burden. However, detecting dense nuclei of complex crowded distribution and diverse appearances remains a challenge. To solve this problem, we propose a novel point-supervised dense nuclei detection framework that introduces position-based anchor optimization to complete morphology-based pseudo-label supervision. Specifically, we first generate cellular-level pseudo labels (CPL) for the detection head via a morphology-based mechanism, which can help to build a baseline point-supervised detection network. Then, considering the crowded distribution of the dense nuclei, we propose a mechanism called Position-based Anchor-quality Estimation (PAE), which utilizes the positional deviation between an anchor and its corresponding point label to suppress low-quality detections far from each nucleus. Finally, to better handle the diverse appearances of nuclei, an Adaptive Anchor Selector (AAS) operation is proposed to automatically select positive and negative anchors according to morphological and positional statistical characteristics of nuclei. We conduct comprehensive experiments on two widely used benchmarks, MO and Lizard, using ResNet50 and PVTv2 as backbones. The results demonstrate that the proposed approach has superior capacity compared with other state-of-the-art methods. In particularly, in dense nuclei scenarios, our method can achieve 95.1% performance of the fully-supervised approach. The code is available at https://github.com/NucleiDet/DenseNucleiDet.


Assuntos
Benchmarking , Diagnóstico por Computador , Humanos , Processamento de Imagem Assistida por Computador , Conhecimento , Aprendizado de Máquina Supervisionado
2.
IEEE Trans Pattern Anal Mach Intell ; 44(6): 3349-3363, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33351751

RESUMO

In recent years, weakly supervised object detection has attracted great attention in the computer vision community. Although numerous deep learning-based approaches have been proposed in the past few years, such an ill-posed problem is still challenging and the learning performance is still behind the expectation. In fact, most of the existing approaches only consider the visual appearance of each proposal region but ignore to make use of the helpful context information. To this end, this paper introduces two levels of context into the weakly supervised learning framework. The first one is the proposal-level context, i.e., the relationship of the spatially adjacent proposals. The second one is the semantic-level context, i.e., the relationship of the co-occurring object categories. Therefore, the proposed weakly supervised learning framework contains not only the cognition process on the visual appearance but also the reasoning process on the proposal- and semantic-level relationships, which leads to the novel deep multiple instance reasoning framework. Specifically, built upon a conventional CNN-based network architecture, the proposed framework is equipped with two additional graph convolutional network-based reasoning models to implement object location reasoning and multi-label reasoning within an end-to-end network training procedure. Comprehensive experiments on the widely used PASCAL VOC and MS COCO benchmarks have been implemented, which demonstrate the superior capacity of the proposed approach when compared with other state-of-the-art methods and baseline models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...