Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Toxics ; 12(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38668505

RESUMO

Lead (Pb) and arsenic (As) are commonly occurring heavy metals in the environment and produce detrimental impacts on the central nervous system. Although they have both been indicated to exhibit neurotoxic properties, it is not known if they have joint effects, and their mechanisms of action are likewise unknown. In this study, zebrafish were exposed to different concentrations of Pb (40 µg/L, 4 mg/L), As (32 µg/L, 3.2 mg/L) and their combinations (40 µg/L + 32 µg/L, 4 mg/L + 3.2 mg/L) for 30 days. The histopathological analyses showed significant brain damage characterized by glial scar formation and ventricular enlargement in all exposed groups. In addition, either Pb or As staining inhibited the swimming speed of zebrafish, which was enhanced by their high concentrations in a mixture. To elucidate the underlying mechanisms, we examined changes in acetylcholinesterase (AChE) activity, neurotransmitter (dopamine, 5-hydroxytryptamine) levels, HPI axis-related hormone (cortisol and epinephrine) contents and neurodevelopment-related gene expression in zebrafish brain. The observations suggest that combined exposure to Pb and As can cause abnormalities in swimming behavior and ultimately exacerbate neurotoxicity in zebrafish by interfering with the cholinergic system, dopamine and 5-hydroxytryptamine signaling, HPI axis function as well as neuronal development. This study provides an important theoretical basis for the mixed exposure of heavy metals and their toxicity to aquatic organisms.

2.
Acta Pharmacol Sin ; 45(6): 1224-1236, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38467717

RESUMO

The root of Aconitum carmichaelii Debx. (Fuzi) is an herbal medicine used in China that exerts significant efficacy in rescuing patients from severe diseases. A key toxic compound in Fuzi, aconitine (AC), could trigger unpredictable cardiotoxicities with high-individualization, thus hinders safe application of Fuzi. In this study we investigated the individual differences of AC-induced cardiotoxicities, the biomarkers and underlying mechanisms. Diversity Outbred (DO) mice were used as a genetically heterogeneous model for mimicking individualization clinically. The mice were orally administered AC (0.3, 0.6, 0.9 mg· kg-1 ·d-1) for 7 d. We found that AC-triggered cardiotoxicities in DO mice shared similar characteristics to those observed in clinic patients. Most importantly, significant individual differences were found in DO mice (variation coefficients: 34.08%-53.17%). RNA-sequencing in AC-tolerant and AC-sensitive mice revealed that hemoglobin subunit beta (HBB), a toxic-responsive protein in blood with 89% homology to human, was specifically enriched in AC-sensitive mice. Moreover, we found that HBB overexpression could significantly exacerbate AC-induced cardiotoxicity while HBB knockdown markedly attenuated cell death of cardiomyocytes. We revealed that AC could trigger hemolysis, and specifically bind to HBB in cell-free hemoglobin (cf-Hb), which could excessively promote NO scavenge and decrease cardioprotective S-nitrosylation. Meanwhile, AC bound to HBB enhanced the binding of HBB to ABHD5 and AMPK, which correspondingly decreased HDAC-NT generation and led to cardiomyocytes death. This study not only demonstrates HBB achievement a novel target of AC in blood, but provides the first clue for HBB as a novel biomarker in determining the individual differences of Fuzi-triggered cardiotoxicity.


Assuntos
Proteínas Quinases Ativadas por AMP , Aconitina , Cardiotoxicidade , Histona Desacetilases , Animais , Camundongos , Cardiotoxicidade/metabolismo , Cardiotoxicidade/etiologia , Histona Desacetilases/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Masculino , Humanos , Aconitum/química , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Medicamentos de Ervas Chinesas/farmacologia
3.
Toxicol Res ; 40(2): 189-202, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38525134

RESUMO

Chronic renal failure (CRF) resulting in vascular calcification, which does damage to blood vessels and endothelium, is an independent risk factor for stroke. It has been reported that cilostazol has a protective effect on the focal cerebral ischemic infarct. However, its impact on vascular injury in CRF combined stroke and its molecular protection mechanism have not been investigated. In this study, we carried out the effect of cilostazol on CRF combined stroke rats, and the results confirmed that it improved the neurobehavior, renal function as well as pathologic changes in both the kidney and brain. In addition, the inflammation and oxidative stress factors in the kidney and brain were suppressed. Moreover, the rates of brain edema and infarction were decreased. The injured brain-blood barrier (BBB) was recovered with less Evans blue extravasation and more expressions of zonula occludens-1(ZO-1) and occludin. More cerebral blood flow (CBF) in the ipsilateral hemisphere and more expression of CD31 and vascular endothelial growth factor (VEGF) in brain and kidney were found in the cilostazol group. Furthermore, cell apoptosis and cell autophagy became less, on the contrary, proteins of vascular endothelial growth factor receptor 2 (VEGFR2) after the cilostazol treatment were increased. More importantly, this protective effect is related to the pathway of Janus Kinase (JAK)/signal transducer and activator of transcription 3 (STAT3), mammalian target of rapamycin (mTOR), and the hypoxia inducible factor-1α (HIF-1α). In conclusion, our results confirmed that cilostazol exerted a protective effect on the brain and kidney function, specifically in vascular injury, oxidative stress, cell apoptosis, cell autophagy, and inflammation response in CRF combined with stroke rats which were related to the upregulation of JAK/STAT3/mTOR signal pathway. Supplementary Information: The online version contains supplementary material available at 10.1007/s43188-023-00217-w.

4.
Sci Total Environ ; 924: 171545, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38458454

RESUMO

Microplastics (MPs) commonly coexist with heavy metals in the soil environment. MPs can influence the activity of heavy metals, and the specific mechanisms need to be further explored. Here, different contents of polystyrene (PS) MPs were added to soil to explore their effects on the adsorption and desorption characteristics of copper (Cu2+) in soil. The adsorption process was mainly chemical adsorption and belonged to a spontaneous, endothermic reaction. The hydrophobicity of MPs slowed down the adsorption and desorption rates. The main adsorption mechanisms included complexation by oxygen-containing functional groups, ion exchange (accounting for 33.97-36.04 % of the total adsorption amounts), and electrostatic interactions. MPs lacked oxygen-containing functional groups and were predominantly engaged in ion exchange and electrostatic interactions. MPs diluted, blocked the soil, and covered the active sites of soil, which reduced adsorption (3.56-16.18 %) and increased desorption (0.90-2.07 %) of Cu2+ in soil samples, thus increasing the activity and mobility of Cu2+. These findings provide new insights into the effects of MPs on the fate and risk of heavy metals in soil. ENVIRONMENTAL IMPLICATION: The existing literature concerning the effects of microplastics on the adsorption of heavy metals in soil is insufficient. Our investigation unveiled that the main adsorption mechanisms of different soil samples included complexation by oxygen-containing functional groups, ion exchange (accounting for 33.97-36.04 % of the total adsorption amounts), and electrostatic interactions. MPs lacked oxygen-containing functional groups and were predominantly engaged in ion exchange and electrostatic interactions. MPs diluted, blocked the soil, and covered the active sites of soil, which reduced adsorption (3.56-16.18 %) and increased desorption (0.90-2.07 %) of Cu2+ in soil samples, thus increasing the activity and mobility of Cu2+.

5.
ACS Appl Mater Interfaces ; 16(10): 13091-13102, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38422229

RESUMO

Paper-based cultural relics experience irreversible aging and deterioration during long-term preservation. The most common process of paper degradation is the acid-catalyzed hydrolysis of cellulose. Nowadays, deacidification has been considered as a practical way to protect acidified literature; however, two important criteria of minimal intervention and reversibility should be considered. Inspired by the superior properties of bacterial cellulose (BC) and its structural similarity to paper, herein, the mineralized BC membranes are applied to deacidification and conservation of paper-based materials for the first time. Based on the enzyme-induced mineralization process, the homogeneous and high-loaded calcifications of hydroxyapatite (HAP) and calcium carbonate (CaCO3) nanoparticles onto the nanofibers of BC networks have been achieved, respectively. The size, morphology, structure of minerals, as well as the alkalinity and alkali reserve of BC membranes are well controlled by regulating enzyme concentration and mineralization time. Compared with HAP/CaCO3-immersed method, HAP/CaCO3-BC membranes show more efficient and sustained deacidification performance on paper. The weak alkalinity of mineralized BC membranes avoids the negative effect of alkali on paper, and the high alkali reserve implies a good sustained-release effect of alkali to neutralize the future generated acid. The multiscale nanochannels of the BC membrane provide ion exchange and acid/alkali neutralization channels between paper and the BC membrane, and the final pH of protected paper can be well stabilized in a certain range. Most importantly, this BC-deacidified method is reversible since the BC membrane can be removed without causing any damage to paper and the original structure and fiber morphology of paper are well preserved. In addition, the mineralized BC membrane provides excellent flame-retardant performance on paper thanks to its unique organic-inorganic composite structure. All of these advantages of the mineralized BC membrane indicate its potential use as an effective protection material for the reversible deacidification and preventive conservation of paper-based cultural relics.


Assuntos
Celulose , Nanofibras , Celulose/química , Nanofibras/química , Durapatita/química , Álcalis
6.
ACS Appl Mater Interfaces ; 16(6): 7640-7649, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38303602

RESUMO

High-performance flexible piezoresistive sensors are becoming increasingly essential in various novel applications such as health monitoring, soft robotics, and human-computer interaction. The evolution of the interfacial contact morphology determines the sensing properties of piezoresistive devices. The introduction of microstructures enriches the interfacial contact morphology and effectively boosts the sensitivity; however, the limited compressibility of conventional microstructures leads to rapid saturation of the sensitivity in the low-pressure range, which hinders their application. Herein, we present a flexible piezoresistive sensor featuring a two-stage micropyramid array structure, which effectively enhances the sensitivity while widening the sensing range. Owing to the synergistic enhancement effect resulting from the sequential contact of micropyramids of various heights, the devices demonstrate remarkable performance, including boosting sensitivity (30.8 kPa-1) over a wide sensing range (up to 200 kPa), a fast response/recovery time (75/50 ms), and an ultralong durability of 15,000 loading-unloading cycles. As a proof of concept, the sensor is applied to detect human physiological and motion signals, further demonstrating a real-time spatial pressure distribution sensing system and a game control system, showing great potential for applications in health monitoring and human-computer interaction.


Assuntos
Computadores , Robótica , Humanos , Software , Movimento (Física) , Sensação
7.
Heliyon ; 10(3): e25289, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38333785

RESUMO

The present investigation aims to design and development of hybrid zinc oxide (ZnO) and manganese dioxide (MnO2) nanoparticles (NPs) doped-biopolymer matrix-based cost-effective technique for the synthesis of biocompatible Kaolinite/Chitosan (Ka/CS) nanocomposites (NCs) could be used as agents for wound healing due to their efficiency and low toxicity. The crystallite size, phase purity and surface morphology of the synthesised NCs were investigated systemic analytical methods. The results revealed that the metal oxide nanocomposites presented that in rod-crystalline in shape and additionally exhibits that 20-30 nm in size. In vitro antibacterial analyses demonstrates that NCs have significantly improved bactericidal inhibition efficiency when compared to the bare hybrid NPs and polymeric components. The in vitro biocompatibility observation demonstrates that prepared hybrid-NPs encapsulated NCs have enhanced cell survival rate (>90 %), which was established by MTT assay and Live/Dead fluorescence assay methods at different incubation time. The DPPH assay was used to investigate the synergistic effects of prepared dressing materials increased antioxidant activity. Preliminary research indicates that these nanocomposites, ZnO/MnO2 incorporated and decorated with Ka/CS NCs, could be a significant promoter and potential candidate for use as a robust wound healing agent in post-operative nursing care.

8.
Mol Pharm ; 21(2): 895-903, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38170629

RESUMO

To develop radiolabeled FGFR2-targeting probes for visualizing fibroblast growth factor receptor (FGFR) expression levels in the tumor microenvironment, four novel 99mTc-labeled FGFR2-targeting peptides ([99mTc]Tc-FGFR2-1, [99mTc]Tc-FGFR2-2, [99mTc]Tc-FGFR2-3, and [99mTc]Tc-FGFR2-4) with different amino acid linkers between the targeted peptide moiety and the 99mTc chelating group were designed and synthesized. The in vitro cellular inhibition, internalization, and efflux results demonstrated that the four 99mTc complexes exhibited FGFR2-specific binding and prolonged cellular retention in DU145 human prostate cancer cells, which indicated that modification from the glycine side (N-terminal) of CH02 was feasible. Among them, [99mTc]Tc-FGFR2-1 exhibited the highest in vitro cellular uptake and in vivo tumor uptake at 30 min postinjection, and tumor uptake could be significantly inhibited by the competitor CH02 (53% inhibited, p < 0.05), suggesting the tumor-specific targeting ability of [99mTc]Tc-FGFR2-1. The DU145-xenografted tumor lesions were clearly visualized by single photon emission computed tomography (SPECT)/CT at 30 min postinjection of [99mTc]Tc-FGFR2-1, highlighting its potential as a SPECT imaging probe for tumor FGFR2 detection.


Assuntos
Melanoma , Peptídeos , Masculino , Humanos , Peptídeos/química , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Melanoma/metabolismo , Quelantes , Ligação Proteica , Linhagem Celular Tumoral , Microambiente Tumoral , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo
9.
Neurol Sci ; 45(6): 2845-2851, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38228940

RESUMO

AIM: The aim of this study was to determine the usefulness of magnetic resonance imaging (MRI) characteristics in discriminating H3 K27M-mutant gliomas from wildtype gliomas in the spinal cord. MATERIALS AND METHODS: Fifty-eight patients with spinal cord gliomas were enrolled in this study. The H3 K27 gene status was identified by Sanger sequencing or immunohistochemistry test of resection tumor specimens. The MR imaging characteristics were evaluated and compared between H3 K27M-mutant and wildtype gliomas using the χ2 test and the Mann-Whitney U test. RESULTS: Of 58 recruited patients, 23 (39.7%) were diagnosed with H3 K27M-mutant glioma. The H3 K27M-mutant gliomas were found to more likely occur in men compared with wildtype gliomas (87.0% vs. 42.9%, p = 0.001). On T2-weighted MR images, the signal-to-noise ratio (SNR) of H3 K27M-mutant gliomas was significantly lower than that of wildtype gliomas (103.9 ± 72.0 vs. 168.9 ± 86.8, p < 0.001). Of 35 wildtype tumors, 60% showed well-defined margin but this feature was not found in all mutant tumors (p < 0.001). The SNR of tumors on contrast-enhanced T1-weighted images of the H3 K27M-mutant gliomas was significantly lower than that of wildtype gliomas (187.7 ± 160.4 vs. 295.1 ± 207.8, p = 0.006). Receiver operating-characteristic analysis revealed that area under curve (AUC) of combination of 1/SNR on T2-weighted images, 1/SNR on contrast-enhanced T1-weighted images, ill-defined margin, and sex reached 0.937 (95% CI, 0.873-1.000) in discriminating H3 K27M-mutant gliomas. CONCLUSIONS: The MR imaging characteristics are valuable in discriminating H3 K27M-mutant from wildtype gliomas in the spinal cord and the combination of these imaging features with sex had a high strength in this discrimination.


Assuntos
Glioma , Histonas , Imageamento por Ressonância Magnética , Mutação , Neoplasias da Medula Espinal , Humanos , Masculino , Glioma/genética , Glioma/diagnóstico por imagem , Glioma/patologia , Feminino , Imageamento por Ressonância Magnética/métodos , Neoplasias da Medula Espinal/genética , Neoplasias da Medula Espinal/diagnóstico por imagem , Neoplasias da Medula Espinal/patologia , Adulto , Pessoa de Meia-Idade , Histonas/genética , Adulto Jovem , Idoso , Adolescente , Medula Espinal/diagnóstico por imagem , Medula Espinal/patologia
10.
Front Genet ; 14: 1289346, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38155713

RESUMO

The prevalence of Anaplastic Lymphoma Kinase gene (ALK) fusion is about 5% among patients with lung adenocarcinoma, underscoring the importance of pinpointing distinct fusion variants for optimizing treatment approaches. This is the first reported case of a 74-year-old female with stage IV lung adenocarcinoma, featuring a novel Kinesin Family Member 13A (KIF13A)-ALK fusion, identified via next-generation sequencing (NGS) and confirmed with fluorescence in situ hybridization (FISH). Initially undergoing chemotherapy and then crizotinib, she achieved a partial response (PR) before progressing with multiple bone metastases. However, subsequent treatment with alectinib as a third-line option yielded positive results. A stable disease state persisted for an impressive 31 months of progression-free survival (PFS), accompanied by minimal toxicity symptoms. Up until now, a remarkable near 4-year span of overall survival (OS) has been consistently observed and monitored. This report of a KIF13A-ALK fusion case benefit significantly from alectinib with extensive follow-up. The case diversifies the array of ALK fusion partners and holds clinical relevance in refining therapeutic choices for KIF13A-ALK fusion-associated lung cancer.

11.
Nanoscale ; 15(43): 17482-17493, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37861463

RESUMO

Sodium metal has emerged as a highly promising anode material for sodium-based batteries, owing to its intrinsic advantages, including its high theoretical capacity, low working plateau and low cost. However, the uncontrolled formation of sodium dendrites accompanied by unrestricted volume expansion severely limits its application. To tackle these issues, we propose an approach to address these issues by adopting a three-dimensional (3D) structure of Ti3C2Tx/reduced graphene oxide (Ti3C2Tx/rGO) constructed by a direct-ink writing (DIW) 3D printing technique as the Na metal anode host electrode. The combination of the 3D-printed rGO skeleton offering artificial porous structures and the incorporation of sodiophilic Ti3C2Tx nanosheets provides abundant nucleation sites and promotes uniform sodium metal deposition. This specially designed architecture significantly enhances the Na metal cycling stability by effectively inhibiting dendrite formation. The experimental results show that the designed Ti3C2Tx/rGO electrode can achieve a high coulombic efficiency (CE) of 99.91% after 1800 cycles (3600 h) at 2 mA cm-2 with 2 mA h cm-2. Notably, the adopted electrodes exhibit a long life span of more than 1400 h with a high CE over 99.93% when measured with an ultra-high capacity of 50 mA h cm-2 at 5 mA cm-2. Furthermore, a 3D-printed full cell consisting of a Na@Ti3C2Tx/rGO anode and a 3D-printed Na3V2(PO4)3C-rGO (NVP@C-rGO) cathode was successfully demonstrated. This 3D-printed cell could provide a notable capacity of 85.3 mA h g-1 at 100 mA g-1 after 500 cycles. The exceptional electrochemical performance achieved by the 3D-printed full cell paves the way for the development of practical sodium metal anodes.

12.
Chemosphere ; 341: 140072, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37678597

RESUMO

The study aimed to investigate the formation of halogenated disinfection byproducts (DBPs) during applying UV/chlorine (UV/Cl2) and unravel the interactive impacts of critical operational parameters and the mechanisms behind DBPs formation. Response surface methodology and quantitative structure-activity relationship models were developed to evaluate the contribution of electrophilic, nucleophilic, and free radical reactions to the formation of DBPs in UV/Cl2. The study found that Cl2 and its interactions dominated the total DBPs and non-Br-DBPs formation, while Br- and the Cl2-Br- interaction played a decisive role in the Br-DBPs formation. The study also observed significant interactions of Br, Cl2, and pH on chloroform, bromodichloromethane, dichloroacetonitrile, 1,1-dichloro-2-propanone, trichloroactic acid, and chlorodibromoacetic acid formations, while no evident interaction on chloral hydrate, dibromochloromethane, trichloroacetone, dibromoacetic acid, and bromodichloroacetic acid formations. The electrophilic substitution of HOBr mainly controlled the formation of trihalomethanes, and the contribution of nucleophilic, electrophilic, and free radical (•OH, Cl•, Cl2•- and ClO•) reactions depended on the molar ratio of Cl2 to Br, and pH-determined hydrolysis rate constants of DBPs and the types of free radicals. Overall, the response surface methodology and quantitative structure-activity relationship models provided a reference for revealing DBPs formation mechanisms in other disinfection processes.


Assuntos
Desinfecção , Relação Quantitativa Estrutura-Atividade , Hidrato de Cloral , Cloretos , Cloro , Halogênios
13.
Heliyon ; 9(8): e18940, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37636392

RESUMO

This paper uses the IV-2SLS model to explore the impact of analyst attention on firms' innovation paths from a dynamic perspective of the life cycle. When firms are in the growth stage, the higher the analyst attention, the more firms will significantly increase their internal R&D expenses and make active technology acquisitions; As firms enter maturity, analyst attention plays a role in promoting R&D investment and corporate venture capital activities; When enterprises are in the decline period, firms are more inclined to innovate independently under the influence of analyst attention. This bias is more significant in non-state enterprises and high-tech enterprises. Further study finds that the interaction between analyst attention and firms' innovation paths under different life cycles effectively enhances innovation output.

14.
Hepatol Commun ; 7(9)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37556375

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is associated with chronic inflammation caused by different factors; especially, the interaction of inflammatory pathways and bile acids (BAs) can affect hepatocyte proliferation, death, and regeneration, but whether BAs promote HCC progression through inflammatory pathways and the mechanisms is still unclear. METHODS AND RESULTS: By examining cancer and tumor-adjacent tissue BA levels and genes associated with BA homeostasis in 37 HCC patients, we found that total bile acids (TBAs) were decreased by 36% and varying degrees of changes in factors regulating BA homeostasis (p < 0.05). In addition, we found that BA homeostasis was disturbed in diethylnitrosamine-induced HCC mouse models, and TBA was correlated with inflammasome activation during HCC progression (6-24 W) (p < 0.05). Similarly, the inflammasome and chenodeoxycholic acid (CDCA) content were suppressed in cholestasis model mice (Mrp2-deficient mice) (p < 0.05). In vitro, CDCA significantly promoted the malignant transformation of hepatocytes (p < 0.001), activated the inflammasome by triggering the release of mitochondrial reactive oxygen species and mitochondrial DNA, and ultimately induced pyroptosis. Furthermore, we found that CDCA has a targeted binding effect with HO-1 through molecular docking and Cellular Thermal Shift Assay experiments. CONCLUSIONS: In conclusion, we found that CDCA can trigger the excessive accumulation of mitochondrial reactive oxygen species by targeting HO-1 to promote the activation of the inflammasome and ultimately promote the progression of HCC. Our study provides a novel mechanism by which BAs promote HCC by activating the inflammasome and establishes the important role of BA homeostasis imbalance in the progression of HCC from the aspect of inflammation.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Ácidos e Sais Biliares , Inflamassomos , Espécies Reativas de Oxigênio , Simulação de Acoplamento Molecular , Células Cultivadas , Ácido Quenodesoxicólico/metabolismo , Inflamação
15.
Materials (Basel) ; 16(16)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37630017

RESUMO

Nitrate-nitrogen (NO3--N) removal and garden waste disposal are critical concerns in urban environmental protection. In this study, biochars were produced by pyrolyzing various garden waste materials, including grass clippings (GC), Rosa chinensis Jacq. branches (RC), Prunus persica branches (PP), Armeniaca vulgaris Lam. branches (AV), Morus alba Linn. sp. branches (MA), Platycladus orientalis (L.) Franco branches (PO), Pinus tabuliformis Carrière branches (PT), and Sophorajaponica Linn. branches (SL) at three different temperatures (300 °C, 500 °C, and 700 °C). These biochars, labeled as GC300, GC500, GC700, and so on., were then used to adsorb NO3--N under various conditions, such as initial pH value, contact time, initial NO3--N concentration, and biochar dosage. Kinetic data were analyzed by pseudo-first-order and pseudo-second-order kinetic models. The equilibrium adsorption data were evaluated by Langmuir, Freundlich, Temkin and Dubinin-Radushkevich models. The results revealed that the biochar yields varied between 14.43% (PT700) and 47.09% (AV300) and were significantly influenced by the type of garden waste and decreased with increasing pyrolysis temperature, while the pH and ash content showed an opposite trend (p < 0.05). The efficiency of NO3--N removal was significantly influenced by the type of feedstock, preparation process, and adsorption conditions. Higher pH values had a negative influence on NO3--N adsorption, while longer contact time, higher initial concentration of NO3--N, and increased biochar dosage positively affected NO3--N adsorption. Most of the kinetic data were better fitted to the pseudo-second-order kinetic model (0.998 > R2 > 0.927). Positive b values obtained from the Temkin model indicated an exothermic process of NO3--N adsorption. The Langmuir model provided better fits for more equilibrium adsorption data than the Freundlich model, with the maximum NO3--N removal efficiency (62.11%) and adsorption capacity (1.339 mg·g-1) in PO700 under the conditions of pH = 2, biochar dosage = 50 mg·L-1, and a reaction time of 24 h. The outcomes of this study contribute valuable insights into garden waste disposal and NO3--N removal from wastewater, providing a theoretical basis for sustainable environmental management practices.

16.
Surg Endosc ; 37(9): 7376-7384, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37580576

RESUMO

BACKGROUND: In recent years, computer-assisted intervention and robot-assisted surgery are receiving increasing attention. The need for real-time identification and tracking of surgical tools and tool tips is constantly demanding. A series of researches focusing on surgical tool tracking and identification have been performed. However, the size of dataset, the sensitivity/precision, and the response time of these studies were limited. In this work, we developed and utilized an automated method based on Convolutional Neural Network (CNN) and You Only Look Once (YOLO) v3 algorithm to locate and identify surgical tools and tool tips covering five different surgical scenarios. MATERIALS AND METHODS: An algorithm of object detection was applied to identify and locate the surgical tools and tool tips. DarkNet-19 was used as Backbone Network and YOLOv3 was modified and applied for the detection. We included a series of 181 endoscopy videos covering 5 different surgical scenarios: pancreatic surgery, thyroid surgery, colon surgery, gastric surgery, and external scenes. A total amount of 25,333 images containing 94,463 targets were collected. Training and test sets were divided in a proportion of 2.5:1. The data sets were openly stored at the Kaggle database. RESULTS: Under an Intersection over Union threshold of 0.5, the overall sensitivity and precision rate of the model were 93.02% and 89.61% for tool recognition and 87.05% and 83.57% for tool tip recognition, respectively. The model demonstrated the highest tool and tool tip recognition sensitivity and precision rate under external scenes. Among the four different internal surgical scenes, the network had better performances in pancreatic and colon surgeries and poorer performances in gastric and thyroid surgeries. CONCLUSION: We developed a surgical tool and tool tip recognition model based on CNN and YOLOv3. Validation of our model demonstrated satisfactory precision, accuracy, and robustness across different surgical scenes.


Assuntos
Redes Neurais de Computação , Procedimentos Cirúrgicos Robóticos , Humanos , Algoritmos , Endoscopia , Bases de Dados Factuais
17.
J Hazard Mater ; 458: 131963, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37406525

RESUMO

We investigated the adsorption mechanism of 66 coexisting pharmaceuticals and personal care products (PPCPs) on microplastics treated with potassium persulfate, potassium hydroxide, and Fenton reagent for 54, 110, and 500 days. The total adsorption capacity (qe) of 66 PPCPs on 15 original microplastics was 171.8 - 1043.7 µg/g, far below that of 177 long-term aged microplastics (7114.0 - 13,114.4 µg/g). Around 69.8% of qe was primarily influenced by the total energy, energy of the highest occupied molecular orbital, and energy gap of PPCPs, calculated using the B3LYP/6-31 G* level. Furthermore, 111 aged microplastics exhibited similar total qe values. Additionally, we developed predictive models based on attenuated total reflectance Fourier transform infrared spectroscopy to predict the individual and total qe on 192 microplastics. These models, including the maximal information coefficient and gradient boosting decision tree regression, exhibited high accuracy with Rtraining2 values of 0.9772 and 0.9661, respectively, and p-values below 0.001. Spectroscopic analysis and machine learning models highlighted surface functional group alterations and the importance of the 1528-1700 cm-1 spectral region and carbon skeleton in the adsorption process. In summary, our findings contribute to understanding the adsorption of PPCPs on microplastics, particularly in the context of long-term aging effects.


Assuntos
Cosméticos , Poluentes Químicos da Água , Microplásticos , Plásticos , Adsorção , Poluentes Químicos da Água/química , Aprendizado de Máquina , Preparações Farmacêuticas
18.
Food Funct ; 14(15): 7299-7301, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37449400

RESUMO

Correction for '6-Gingerol as an arginase inhibitor prevents urethane-induced lung carcinogenesis by reprogramming tumor supporting M2 macrophages to M1 phenotype' by Jingjing Yao et al., Food Funct., 2018, 9, 4611-4620, https://doi.org/10.1039/C8FO01147H.

19.
Chem Biol Drug Des ; 102(4): 738-748, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37328929

RESUMO

A series of benzylaminoimidazoline derivatives was synthesized and evaluated for norepinephrine transporter (NET) targeting. Among them, N-(3-iodobenzyl)-4,5-dihydro-1H-imidazol-2-amine (Compound 9) displayed the highest affinity for NET (IC50 = 5.65 ± 0.97 µM). The corresponding radiotracer [125 I]9 was further prepared by copper-mediated radioiodination and evaluated both in vitro and in vivo. The cellular uptake results suggested that [125 I]9 was specifically taken up by the NET-expressing SK-N-SH cell line. Biodistribution studies showed that [125 I]9 accumulated in the heart (5.54 ± 1.24 %ID/g at 5 min p.i. and 0.79 ± 0.08 %ID/g at 2 h p.i.) and adrenal gland (14.83 ± 3.47 %ID/g at 5 min p.i. and 3.87 ± 0.24 %ID/g at 2 h p.i.). The uptake in the heart and adrenal gland could be significantly inhibited by preinjection of desipramine (DMI). These results indicated that the benzylaminoimidazoline derivatives retained affinity for NET, which could provide structure-activity relationship data for further studies.


Assuntos
Compostos de Benzil , Proteínas da Membrana Plasmática de Transporte de Norepinefrina , Radioisótopos do Iodo/metabolismo , Ligantes , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Distribuição Tecidual , Compostos de Benzil/química , Compostos de Benzil/farmacologia , Imidazóis/química
20.
J Hazard Mater ; 458: 131604, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37343407

RESUMO

To investigate the catalytic mechanism and mass transfer efficiency in the removal of amitriptyline using an electro-peroxide process, a CuFe2O4-modified carbon cloth cathode was prepared and utilized in a reaction unit. The results demonstrated a remarkable efficacy of the system, achieving 91.0% amitriptyline removal, 68.3% mineralization, 41.2% mineralization current efficiency, and 0.24 kWh/m3 energy consumption within just five minutes of treatment. The study revealed that the exposed Fe atoms of the ferrite nanoparticles, with a size of 22.7 nm and 89.7% crystallinity, functioned as mediators to bind the adsorbed O atoms. The 3dxy, 3dxz, and 3d2z orbitals of Fe atoms interacted with the 2pz orbital of O atoms of H2O2 and O3 to form σ and π bonds, facilitating the adsorption-activation of H2O2 and O3 into hydroxyl radicals. These hydroxyl radicals (∼ 1.15 × 1013 mol/L) were distributed at the cathode-solution interface and rapidly consumed along the direction of liquid flow. The flow-through cathode design improved the mass transfer of aqueous O3 and in-situ generated H2O2, leading to an increased yield of hydroxyl radicals, as well as the contact time and space between hydroxyl radicals and amitriptyline. Ultimately, this resulted in a higher degradation efficiency of the system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...