Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 11(7)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35883880

RESUMO

Rhodomyrtus tomentosa fruit (RTF) has been known as a food source with multiple health-care components. In this work, nutrition characteristics, free and bound phenolic profiles, antioxidant properties in vitro and digestive enzymes inhibitory activities of un-fully mature RTF (UM-RTF) and fully mature RTF (FM-RTF) were evaluated for the first time. Results verified that high levels of energy, ascorbic acid, organic acids and total phenolics were observed in FM-RTF. Moreover, FM-RTF had significant higher total phenolic content (TPC), but significantly lower total flavonoid content (TFC) than UM-RTF. In addition, twenty phenolic compounds in RTF were identified by high performance liquid chromatography-electrospray ionization-quadrupole time-of-flight tandem mass spectrometry (HPLC-ESI-qTOF-MS/MS) method. Quantitative analysis results indicated that gallic acid, ellagic acid and astragalin were the predominant free phenolics, while gallic acid and syringetin-3-O-glucoside were dominant in bound phenolic fractions. In contrast, higher contents of phenolics were observed in FM-RTF. The results also confirmed that FM-RTF exhibited higher antioxidant activities and digestive enzymes inhibitory activities than UM-RTF. Strong inhibitory ability on α-glucosidase was found in RTF, while bound phenolics showed a stronger α-amylase inhibitory effect than free phenolics. Moreover, the interaction between the main phenolic compounds and α-glucosidase/α-amylase was preliminary explored by molecular docking analysis. The results provided valuable data about the chemical compositions and biological potential of R. tomentosa fruits in both maturation stages studied.

2.
Food Chem ; 393: 133438, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35696951

RESUMO

In this study, the mitigative effect of Rhodomyrtus tomentosa (Ait.) Hassk fruit extract rich in phenolic compounds (RTE) on high fat diet (HFD)-induced intestinal barrier dysfunction of mice and the underlying mechanism were explored. The results revealed that RTE supplementation obviously improved gut microbiota dysbiosis induced by HFD, which was evidenced by elevated alpha diversity, suppressed Firmicutes/Bacteroidetes ratio, enriched short-chain fatty acid-producing bacteria (Odoribacter, Parabacteroides, Blautia and Akkermansia), and depleted harmful bacteria (Helicobacter, norank_f_ Desulfovibrionaceae and Mucispirillum). RTE intervention mitigated intestinal barrier dysfunction and inflammation by elevating tight junction proteins expression levels and decreasing proinflammatory cytokines levels. Furthermore, RTE administration inhibited the HFD-induced trigger of the lipopolysaccharide-toll-like receptor 4-nuclear factor kappa-B (LPS-TLR4-NF-κB) pathway in colonic tissue. Therefore, RTE supplementation may be an effective way to protect the intestinal tract in HFD-induced obese individuals.


Assuntos
Gastroenteropatias , Myrtaceae , Animais , Dieta Hiperlipídica , Disbiose/microbiologia , Frutas/metabolismo , Inflamação/tratamento farmacológico , Inflamação/genética , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos C57BL , Myrtaceae/genética , Myrtaceae/metabolismo , NF-kappa B/metabolismo , Fenóis , Extratos Vegetais/farmacologia
3.
Food Res Int ; 151: 110824, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34980375

RESUMO

Nonalcoholic fatty liver disease (NAFLD), as the commonest form of chronic liver disease, is accompanied by liver oxidative stress and inflammatory responses. Rhodomyrtus tomentosa (Ait.) Hassk fruit phenolic rich extract (RTE) possesses multiple pharmacological effects in management of chronic diseases. In this study, the liver-protective effect of RTE on mice with high-fat-diet (HFD)-induced NAFLD was investigated for the first time, and the underlying molecular mechanism was explored via integration of transcriptomics and metabolomics. The results showed that RTE mitigated liver damage, which was evidenced by declined inflammatory cell infiltration in liver, decreased liver function markers, oxidative stress indexes, lipid profile levels and inflammatory cytokines levels. The differential metabolites by metabonomics illustrated supplementation of RTE affected metabolomics pathways including tryptophan metabolism, alanine, aspartate and glutamate metabolism, D-glutamine and D-glutamate metabolism, cysteine and methionine metabolism, arginine and proline metabolism, which are all involved in oxidative stress and inflammation. Furthermore, the five differential expression genes (DEGs) through liver transcriptomics were screened and recognized, namely Tnfrsf21, Ifit1, Inhbb, Mapk15 and Gadd45g, which revealed that HFD induced Cytokine-cytokine receptor interaction pathway, NF-κB signaling pathway NOD-like receptor pathway, TNF signaling pathway. Integrated analysis of transcriptomics and metabolomics confirmed the supplementation of RTE had significantly regulatory effects on the metabolic pathways involved in inflammatory responses. Additionally, RT-PCR and western blot authenticated RTE intervention regulated the mRNA levels of liver genes involved in inflammation response and inhibited the liver endotoxin-TLR4-NF-κB pathway triggered by HFD, thus alleviating NAFLD. Our findings strongly support the possibility that RTE can be regarded as a potential therapeutic method for obesity-associated NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Frutas , Metabolômica , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Extratos Vegetais/farmacologia , Transcriptoma
4.
Antioxidants (Basel) ; 8(12)2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31795516

RESUMO

Free and bound phenolic fractions from six buckwheat varieties were investigated for their compositions, antioxidant activities, and inhibitory effects on α-glucosidase. The results showed that different buckwheat varieties have significant differences in phenolic/flavonoid contents, and these contents were found in higher quantities in free form than in bound form. HPLC results revealed that rutin, quercetin, and kaempferol-3-O-rutinoside were the most abundant components in free and bound forms, whereas dihydromyricetin was found only in the bound form. Free phenolics showed higher antioxidant activities of DPPH, ABTS·+, OH●, and FRAP than those of bound phenolics. Strong inhibitory effects against α-glucosidase by the free/bound phenolic fractions were found in all buckwheat varieties, and free phenolics showed stronger α-glucosidase inhibition than that of the corresponding bound phenolics. More importantly, the main phenolic compounds observed in the buckwheat varieties were subjected to molecular docking analysis to provide insight into their interactions with α-glucosidase. The contributions by individual phenolics to the observed variation was analysed by Pearson correlation coefficient analysis and principal component analysis. The present study provides a comprehensive comparison for the phenolic fractions of buckwheat varieties and identify the main contributors to antioxidant and α-glucosidase inhibitory activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...