Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 897: 165394, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37437630

RESUMO

Leaf functional traits (LFTs) of desert plants are responsive, adaptable and highly plastic to their environment. However, the macroscale variation in LFTs and driving factors underlying this variation remain unclear, especially for desert plants. Here, we measured eight LFTs, including leaf carbon concentration (LCC), leaf nitrogen concentration (LNC), leaf phosphorus concentration (LPC), specific leaf area (SLA), leaf dry matter content (LDMC), leaf mass per area (LMA), leaf thickness (LTH) and leaf tissue density (LTD) across 114 sites along environmental gradient in the drylands of China and in Guazhou Common Garden and evaluated the effect of environment and phylogeny on the LFTs. We noted that for all species, the mean values of LCC, LNC, LPC, SLA, LDMC, LMA, LTH and LTD were 384.62 mg g-1, 19.91 mg g-1, 1.12 mg g-1, 79.62 cm2 g-1, 0.74 g g-1, 237.39 g m-2, 0.38 mm and 0.91 g cm-3, respectively. LFTs exhibited significant geographical variations and the LNC, LMA and LTH in the plants of Guazhou Common Garden were significantly higher than the field sites in the drylands of China. LDMC and LTD of plants in Guazhou Common Garden were, however, considerably lower than those in the drylands of China. LCC, LPC, LTH and LTD differed significantly among different plant lifeforms, while LNC, SLA, LDMC and LMA didn't show significant variations. We found that the environmental variables explained higher spatial variations (3.6-66.3 %) in LFTs than the phylogeny (1.8-54.2 %). The LCC significantly increased, while LDMC and LTD decreased with increased temperature and reduced precipitation. LPC, LDMC, LMA, and LTD significantly increased, while SLA and LTH decreased with increased aridity. However, leaf elements were not significantly correlated with soil nutrients. The mean annual precipitation was a key factor controlling variations in LFTs at the macroscale in the drylands of China. These findings will provide new insights to better understand the response of LFTs and plants adaptation along environmental gradient in drylands, and will serve as a reference for studying biogeographic patterns of leaf traits.


Assuntos
Plantas , Solo , Fenótipo , Geografia , China , Fósforo , Carbono , Folhas de Planta
2.
Environ Toxicol ; 38(1): 193-204, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36190517

RESUMO

Excessive fluoride intake can cause dental fluorosis during teeth development and growth. However, the mechanisms underlying fluoride-induced enamel damage are still not fully elucidated. Previously, we observed fluoride-induced autophagy in ameloblasts, but the effects of fluoride on autophagy flux in ameloblasts remain unclear. Hence, this study aimed to clarify the effects of fluoride and rapamycin, an autophagy activator, on autophagy flux in ameloblasts. This in vitro study used the murine ameloblast-derived cell line LS8. Cells were treated with different concentrations of sodium fluoride (NaF) to evaluate NaF-induced cytotoxicity. Using transmission electron microscopy, we observed an increase in the number of autophagosomes with increasing fluoride concentrations. Western blot analyses showed increases in microtubule-associated protein 1 light chain 3 (LC3) and SQSTM1 (p62) expression after NaF treatment and an increase in LC3II expression after bafilomycin A1 administration. Together with changes in RFP-GFP-LC3 lentivirus expression, this demonstrated that fluoride impaired autophagy flux. Furthermore, we evaluated whether rapamycin can alleviate fluoride-induced cytotoxicity by restoring autophagy flux. Compared to the NaF-treated group, LS8 cells cotreated with NaF and rapamycin grew considerably better and had significantly decreased p62 expression. Taken together, these data suggest that fluoride-induced impaired autophagosome degradation may damage ameloblasts. This provides experimental in vitro evidence and an explanation for the observed NaF-induced toxicity of ameloblasts. Rapamycin probably alleviates this impairment by decreasing the expression of p62, thereby preventing autophagy defects.


Assuntos
Ameloblastos , Fluoretos , Camundongos , Animais , Ameloblastos/metabolismo , Fluoretos/toxicidade , Sirolimo/farmacologia , Autofagia , Fluoreto de Sódio/toxicidade
3.
Environ Microbiol ; 24(11): 5483-5497, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35706137

RESUMO

Archaea represent a diverse group of microorganisms often associated with extreme environments. However, an integrated understanding of biogeographical patterns of the specialist Haloarchaea and the potential generalist ammonia-oxidizing archaea (AOA) across large-scale environmental gradients remains limited. We hypothesize that niche differentiation determines their distinct distributions along environmental gradients. To test the hypothesis, we use a continental-scale research network including 173 dryland sites across northern China. Our results demonstrate that Haloarchaea and AOA dominate topsoil archaeal communities. As hypothesized, Haloarchaea and AOA show strong niche differentiation associated with two ecosystem types mainly found in China's drylands (i.e. deserts vs. grasslands), and they differ in the degree of habitat specialization. The relative abundance and richness of Haloarchaea are higher in deserts due to specialization to relatively high soil salinity and extreme climates, while those of AOA are greater in grassland soils. Our results further indicate a divergence in ecological processes underlying the segregated distributions of Haloarchaea and AOA. Haloarchaea are governed primarily by environmental-based processes while the more generalist AOA are assembled mostly via spatial-based processes. Our findings add to existing knowledge of large-scale biogeography of topsoil archaea, advancing our predictive understanding on changes in topsoil archaeal communities in a drier world.


Assuntos
Archaea , Ecossistema , Archaea/genética , Microbiologia do Solo , Amônia , Solo , Oxirredução , Nitrificação , Filogenia
4.
Ecotoxicol Environ Saf ; 235: 113362, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35306215

RESUMO

Numerous microRNAs participate in regulating the pathological process of autophagy. We have found miR-296-5p is one of the most significantly down-regulated microRNAs in a high concentration of sodium fluoride. However, it is not clear whether miR-296-5p augments autophagy in dental fluorosis. Our purpose is to explore the function of miR-296-5p in regulating autophagy of excessive fluoride development. Thus, the cell line of ameloblasts LS8 was exposed to a 1.5 mM dose of NaF and miR-296-5p-mimics, Real-time qPCR, CCK-8 assays, Fluorescence imaging and Western blot analysis were performed. Autophagy was observed. As our results indicated, miR-296-5p overexpression in mouse LS8 cells significantly accelerated autophagy. The autophagy inhibition effect of miR-296-5p underexpression was consistent with the effect of the AMPK inhibitor. And we found that the expression of LC3II was decreased via down-regulation of AMPK. The change of ULK1 by miR-296-5p may be accomplished through AMPK. Thus, miR-296-5p may improve the secretion of autophagic mediators by activating AMPK/ULK1 expression in fluorosis, suggesting that miR-296-5p, AMPK/ULK1 may be potential therapeutic targets under the higher fluoride stimulation.


Assuntos
Proteínas Quinases Ativadas por AMP , MicroRNAs , Proteínas Quinases Ativadas por AMP/genética , Animais , Autofagia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Fluoretos/toxicidade , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo
5.
Natl Sci Rev ; 8(10): nwab025, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34858605

RESUMO

The extent to which key factors at the global scale influence plant biomass allocation patterns remains unclear. Here, we provide a theory about how biotic and abiotic factors influence plant biomass allocation and evaluate its predictions using a large global database for forested communities. Our analyses confirm theoretical predictions that temperature, precipitation, and plant height and density jointly regulate the quotient of leaf biomass and total biomass, and that they have a much weaker effect on shoot (leaf plus stem) biomass fractions at a global scale. Moreover, biotic factors have larger effects than abiotic factors. Climatic variables act equally on shoot and root growth, and differences in plant body size and age, as well as community species composition, which vary with climate in ways that drown out the variations in biomass fractions. The theory and data presented here provide mechanistic explanations of why climate has little effect on biomass fractions.

6.
Nat Commun ; 12(1): 5350, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504089

RESUMO

Relationships between biodiversity and multiple ecosystem functions (that is, ecosystem multifunctionality) are context-dependent. Both plant and soil microbial diversity have been reported to regulate ecosystem multifunctionality, but how their relative importance varies along environmental gradients remains poorly understood. Here, we relate plant and microbial diversity to soil multifunctionality across 130 dryland sites along a 4,000 km aridity gradient in northern China. Our results show a strong positive association between plant species richness and soil multifunctionality in less arid regions, whereas microbial diversity, in particular of fungi, is positively associated with multifunctionality in more arid regions. This shift in the relationships between plant or microbial diversity and soil multifunctionality occur at an aridity level of ∼0.8, the boundary between semiarid and arid climates, which is predicted to advance geographically ∼28% by the end of the current century. Our study highlights that biodiversity loss of plants and soil microorganisms may have especially strong consequences under low and high aridity conditions, respectively, which calls for climate-specific biodiversity conservation strategies to mitigate the effects of aridification.


Assuntos
Biodiversidade , Clima Desértico , Fungos/metabolismo , Desenvolvimento Vegetal , Plantas/metabolismo , Solo/química , China , Ecossistema , Fungos/classificação , Fungos/crescimento & desenvolvimento , Geografia , Concentração de Íons de Hidrogênio , Modelos Teóricos , Plantas/classificação , Microbiologia do Solo , Especificidade da Espécie , Água/metabolismo
7.
Plants (Basel) ; 10(4)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801576

RESUMO

Plants need water and energy for their growth and reproduction. However, how water and energy availability influence dryland plant diversity along the aridity gradient in water-limited regions is still lacking. Hence, quantitative analyses were conducted to evaluate the relative importance of water and energy to dryland plant diversity based on 1039 quadrats across 184 sites in China's dryland. The results indicated that water availability and the water-energy interaction were pivotal to plant diversity in the entire dryland and consistent with the predictions of the water-energy dynamic hypothesis. The predominance of water limitation on dryland plant diversity showed a weak trend with decreasing aridity, while the effects of energy on plants were found to be significant in mesic regions. Moreover, the responses of different plant lifeforms to water and energy were found to vary along the aridity gradient. In conclusion, the study will enrich the limited knowledge about the effects of water and energy on plant diversity (overall plants and different lifeforms) in the dryland of China along the aridity gradient.

8.
Autoimmun Rev ; 18(8): 767-777, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31181327

RESUMO

P2X7 receptor (P2X7R), a distinct ligand-gated ion channel, is a member of purinergic type 2 receptor family with ubiquitous expression in human body. Previous studies have revealed a pivotal role of P2X7R in innate and adaptive immunity. Once activated, it will meditate some vital cascaded responses including the assembly of nucleotide-binding domain (NOD) like receptor protein 3 (NLRP3) inflammasome, non-classical secretion of IL-1ß, modulation of cytokine-independent pathways in inflammation such as P2X7R- transglutaminase-2 (TG2) and P2X7R-cathepsin pathway, activation and regulation of T cells, etc. In fact, above responses have been identified to be involved in the development of autoimmunity, specifically, the NLRP3 inflammasome could promote inflammation in massive autoimmune diseases and TG2, as well as cathepsin may contribute to joint destruction and degeneration in inflammatory arthritis. Recently, numerous evidences further suggested the significance of P2X7R in the pathogenesis of autoimmune diseases, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), inflammatory bowel disease (IBD), multiple sclerosis (MS), etc. In this review, we will succinctly discuss the biological characteristics and summarize the recent progress of the involvement of P2X7R in the development and pathogenesis of autoimmune diseases, as well as its clinical implications and therapeutic potential.


Assuntos
Doenças Autoimunes/imunologia , Receptores Purinérgicos P2X7/imunologia , Animais , Doenças Autoimunes/terapia , Humanos
9.
Ying Yong Sheng Tai Xue Bao ; 24(9): 2608-18, 2013 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-24417121

RESUMO

From the viewpoint of land surface evapotranspiration, and by using the semi-empirical evapotranspiration model based on the Priestley-Taylor equation and the land surface temperature-vegetation index (LST-VI) triangle algorithm, the current monitoring technology of agricultural drought based on remote sensing was improved, and a simplified Evapotranspiration Stress Index (SESI) was derived. With the application of the MODIS land products from March to November in 2008 and 2009, the triangle algorithm modeling with three different schemes was constructed to calculate the SESI to monitor the agricultural drought in the plain areas of Beijing, Tianjin, and Hebei, in comparison with the Temperature Vegetation Dryness Index (TVDI). The results showed that SESI could effectively simplify the remote sensing drought monitoring method, and there was a good agreement between SESI and surface soil (10 and 20 cm depth) moisture content. Moreover, the performance of SESI was better in spring and autumn than in summer, and the SESI during different periods was more comparable than TVDI. It was feasible to apply the SESI to the continuous monitoring of a large area of agricultural drought.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Secas , Ecossistema , Monitoramento Ambiental/métodos , Tecnologia de Sensoriamento Remoto/métodos , Agricultura/métodos , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...