Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
1.
Redox Biol ; 73: 103174, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38701646

RESUMO

Ribosomes mediate protein synthesis, which is one of the most energy-demanding activities within the cell, and mitochondria are one of the main sources generating energy. How mitochondrial morphology and functions are adjusted to cope with ribosomal defects, which can impair protein synthesis and affect cell viability, is poorly understood. Here, we used the fission yeast Schizosaccharomyces Pombe as a model organism to investigate the interplay between ribosome and mitochondria. We found that a ribosomal insult, caused by the absence of Rpl2702, activates a signaling pathway involving Sty1/MAPK and mTOR to modulate mitochondrial morphology and functions. Specifically, we demonstrated that Sty1/MAPK induces mitochondrial fragmentation in a mTOR-independent manner while both Sty1/MAPK and mTOR increases the levels of mitochondrial membrane potential and mitochondrial reactive oxygen species (mROS). Moreover, we demonstrated that Sty1/MAPK acts upstream of Tor1/TORC2 and Tor1/TORC2 and is required to activate Tor2/TORC1. The enhancements of mitochondrial membrane potential and mROS function to promote proliferation of cells bearing ribosomal defects. Hence, our study reveals a previously uncharacterized Sty1/MAPK-mTOR signaling axis that regulates mitochondrial morphology and functions in response to ribosomal insults and provides new insights into the molecular and physiological adaptations of cells to impaired protein synthesis.

2.
J Mol Cell Biol ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710586

RESUMO

Chromothripsis, a type of complex chromosomal rearrangement originally known as chromoanagenesis, has been a subject of extensive investigation due to its potential role in various diseases, particularly cancer. Chromothripsis involves the rapid acquisition of tens to hundreds of structural rearrangements within a short period, leading to complex alterations in one or a few chromosomes. This phenomenon is triggered by chromosome missegregation during mitosis. Errors in accurate chromosome segregation lead to formation of aberrant structural entities such as micronuclei or chromatin bridges. The association between chromothripsis and cancer has attracted significant interest, with potential implications for tumorigenesis and disease prognosis. This review aims to explore the intricate mechanisms and consequences of chromothripsis, with a specific focus on its association with mitotic perturbations. Herein, we discuss a comprehensive analysis of crucial molecular entities and pathways, exploring the intricate roles of the CIP2A-TOPBP1 complex, micronuclei formation, chromatin bridge processing, DNA damage repair, and mitotic checkpoints. Moreover, the review will highlight recent advancements in identifying potential therapeutic targets and the underlying molecular mechanisms associated with chromothripsis, paving the way for future therapeutic interventions in various diseases.

3.
Nat Commun ; 15(1): 3558, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670995

RESUMO

The E3 ligase-degron interaction determines the specificity of the ubiquitin‒proteasome system. We recently discovered that FEM1B, a substrate receptor of Cullin 2-RING ligase (CRL2), recognizes C-degrons containing a C-terminal proline. By solving several cryo-EM structures of CRL2FEM1B bound to different C-degrons, we elucidate the dimeric assembly of the complex. Furthermore, we reveal distinct dimerization states of unmodified and neddylated CRL2FEM1B to uncover the NEDD8-mediated activation mechanism of CRL2FEM1B. Our research also indicates that, FEM1B utilizes a bipartite mechanism to recognize both the C-terminal proline and an upstream aromatic residue within the substrate. These structural findings, complemented by in vitro ubiquitination and in vivo cell-based assays, demonstrate that CRL2FEM1B-mediated polyubiquitination and subsequent protein turnover depend on both FEM1B-degron interactions and the dimerization state of the E3 ligase complex. Overall, this study deepens our molecular understanding of how Cullin-RING E3 ligase substrate selection mediates protein turnover.


Assuntos
Microscopia Crioeletrônica , Proteína NEDD8 , Receptores de Interleucina-17 , Ubiquitina-Proteína Ligases , Ubiquitinação , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/química , Proteína NEDD8/metabolismo , Proteína NEDD8/genética , Prolina/metabolismo , Multimerização Proteica , Células HEK293 , Ligação Proteica , Especificidade por Substrato , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/química , Modelos Moleculares , Proteínas Culina/metabolismo , Proteínas Culina/química , Proteínas Culina/genética , Degrons
4.
Nat Commun ; 15(1): 1465, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368419

RESUMO

Protein-modifying enzymes regulate the dynamics of myriad post-translational modification (PTM) substrates. Precise characterization of enzyme-substrate associations is essential for the molecular basis of cellular function and phenotype. Methods for direct capturing global substrates of protein-modifying enzymes in living cells are with many challenges, and yet largely unexplored. Here, we report a strategy to directly capture substrates of lysine-modifying enzymes via PTM-acceptor residue crosslinking in living cells, enabling global profiling of substrates of PTM-enzymes and validation of PTM-sites in a straightforward manner. By integrating enzymatic PTM-mechanisms, and genetically encoding residue-selective photo-crosslinker into PTM-enzymes, our strategy expands the substrate profiles of both bacterial and mammalian lysine acylation enzymes, including bacterial lysine acylases PatZ, YiaC, LplA, TmcA, and YjaB, as well as mammalian acyltransferases GCN5 and Tip60, leading to discovery of distinct yet functionally important substrates and acylation sites. The concept of direct capturing substrates of PTM-enzymes via residue crosslinking may extend to the other types of amino acid residues beyond lysine, which has the potential to facilitate the investigation of diverse types of PTMs and substrate-enzyme interactive proteomics.


Assuntos
Lisina , Proteínas , Animais , Lisina/metabolismo , Proteínas/metabolismo , Acilação , Proteômica/métodos , Processamento de Proteína Pós-Traducional , Mamíferos/metabolismo
5.
J Mol Cell Biol ; 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402459

RESUMO

Stable transmission of genetic information during cell division requires faithful chromosome segregation. Mounting evidence has demonstrated that PLK1 dynamics at kinetochores control correct kinetochore-microtubule attachments and subsequent silencing of the spindle checkpoint. However, the mechanisms underlying PLK1-mediated silencing of the spindle checkpoint remain elusive. Here, we identified a regulatory mechanism by which PLK1-elicited ZW10 phosphorylation regulates spindle checkpoint silencing in mitosis. ZW10 is a cognate substrate of PLK1, and the phosphorylation of ZW10 at Ser12 enables dynamic ZW10-Zwint1 interactions. Inhibition of ZW10 phosphorylation resulted in misaligned chromosomes, while persistent expression of phospho-mimicking ZW10 mutant caused premature anaphase, in which sister chromatids entangled as cells entered anaphase. These findings reveal the previously uncharacterized PLK1-ZW10 interaction through which dynamic phosphorylation of ZW10 fine-tunes accurate chromosome segregation in mitosis.

6.
J Biol Chem ; 300(3): 105754, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360270

RESUMO

KDELR (Erd2 [ER retention defective 2] in yeasts) is a receptor protein that retrieves endoplasmic reticulum (ER)-resident proteins from the Golgi apparatus. However, the role of the KDELR-mediated ER-retrieval system in regulating cellular homeostasis remains elusive. Here, we show that the absence of Erd2 triggers the unfolded protein response (UPR) and enhances mitochondrial respiration and reactive oxygen species in an UPR-dependent manner in the fission yeast Schizosaccharomyces pombe. Moreover, we perform transcriptomic analysis and find that the expression of genes related to mitochondrial respiration and the tricarboxylic acid cycle is upregulated in a UPR-dependent manner in cells lacking Erd2. The increased mitochondrial respiration and reactive oxygen species production is required for cell survival in the absence of Erd2. Therefore, our findings reveal a novel role of the KDELR-Erd2-mediated ER-retrieval system in modulating mitochondrial functions and highlight its importance for cellular homeostasis in the fission yeast.


Assuntos
Retículo Endoplasmático , Mitocôndrias , Schizosaccharomyces , Resposta a Proteínas não Dobradas , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Mitocôndrias/genética , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
7.
J Mol Cell Biol ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38389254

RESUMO

Although the dynamic instability of microtubules (MTs) is fundamental to many cellular functions, quiescent MTs with unattached free distal ends are commonly present and play important roles in various events to power cellular dynamics. However, how these free MT tips are stabilized remains poorly understood. Here, we report that centrosome and spindle pole protein 1 (CSPP1) caps and stabilizes both plus and minus ends of static MTs. Real-time imaging of laser-ablated MTs in live cells showed deposition of CSPP1 at the newly generated MT ends, whose dynamic instability was concomitantly suppressed. Consistently, MT ends in CSPP1-overexpressing cells were hyper-stabilized, while those in CSPP1-depleted cells were much more dynamic. This CSPP1-elicited stabilization of MTs was demonstrated to be achieved by suppressing intrinsic MT catastrophe and restricting the polymerization. Importantly, CSPP1-bound MTs were resistant to MCAK-mediated depolymerization. These findings delineate a previously uncharacterized CSPP1 activity that integrates MT end capping to orchestrate quiescent MTs.

8.
Cell Insight ; 3(2): 100147, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38344386

RESUMO

The stimulator of interferon genes (STING) plays a pivotal role in orchestrating innate immunity, and dysregulated activity of STING has been implicated in the pathogenesis of autoimmune diseases. Recent findings suggest that bacterial infection activates STING, relieving ER stress, and triggers non-canonical autophagy by spatially regulating STX17. Despite these insights, the precise mechanism governing the dynamics of autophagosome fusion elicited by STING remains unclear. In this study, we demonstrate that dynamic STING activation guides the autophagy flux, mirroring the trajectory of canonical autophagy adaptors. STING engages in a physical interaction with STX17, and agonist-induced phosphorylation or degradation alleviates STING's inhibitory effects on the assembly of the STX17-SNAP29-VAMP8 complex. Consistent with these findings, degradation-deficient mutants hinder autophagy flux by impeding STX17-mediated autophagosome-lysosome fusion. Moreover, STING mutants associated with lupus disrupt the assembly of the STX17-SNAP29-VAMP8 complex and autophagy process, which lead to persistent STING activation and elevated IFN-ß production. Our results highlight that the intracellular trajectory of STING, coupled with autophagy flux, guides the assembly and membrane fusion of the STX17-SNAP29-VAMP8 complex, ensuring the accurate regulation of innate immunity.

9.
Mol Biol Cell ; 35(4): ar51, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38381564

RESUMO

Visualization of specific molecules and their assembly in real time and space is essential to delineate how cellular dynamics and signaling circuit are orchestrated during cell division cycle. Our recent studies reveal structural insights into human centromere-kinetochore core CCAN complex. Here we introduce a method for optically imaging trimeric and tetrameric protein interactions at nanometer spatial resolution in live cells using fluorescence complementation-based Förster resonance energy transfer (FC-FRET). Complementary fluorescent protein molecules were first used to visualize dimerization followed by FRET measurements. Using FC-FRET, we visualized centromere CENP-SXTW tetramer assembly dynamics in live cells, and dimeric interactions between CENP-TW dimer and kinetochore protein Spc24/25 dimer in dividing cells. We further delineated the interactions of monomeric CENP-T with Spc24/25 dimer in dividing cells. Surprisingly, our analyses revealed critical role of CDK1 kinase activity in the initial recruitment of Spc24/25 by CENP-T. However, interactions between CENP-T and Spc24/25 during chromosome segregation is independent of CDK1. Thus, FC-FRET provides a unique approach to delineate spatiotemporal dynamics of trimerized and tetramerized proteins at nanometer scale and establishes a platform to report the precise regulation of multimeric protein interactions in space and time in live cells.


Assuntos
Proteínas Cromossômicas não Histona , Transferência Ressonante de Energia de Fluorescência , Humanos , Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Ciclo Celular , Centrômero/metabolismo , Proteína Centromérica A/metabolismo
10.
J Mol Cell Biol ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200711

RESUMO

Accurate chromosome segregation in mitosis depends on kinetochores that connect centromeric chromatin to spindle microtubules. Centromeres are captured by individual microtubules via a kinetochore constitutive centromere-associated network (CCAN) during chromosome segregation. CCAN contains 16 subunits, including CENP-W and CENP-T. However, the molecular recognition and mitotic regulation of the CCAN assembly remain elusive. Here, we revealed that CENP-W binds to the histone fold domain and an uncharacterized N-terminal region of CENP-T. Aurora B phosphorylates CENP-W at Thr60, which enhances the interaction between CENP-W and CENP-T to ensure robust metaphase chromosome alignment and accurate chromosome segregation in mitosis. These findings delineate a conserved signaling cascade that integrates protein phosphorylation with CCAN integrity for the maintenance of genomic stability.

11.
Cell Discov ; 10(1): 11, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291322

RESUMO

Mitochondrial rRNA modifications are essential for mitoribosome assembly and its proper function. The m4C methyltransferase METTL15 maintains mitochondrial homeostasis by catalyzing m4C839 located in 12 S rRNA helix 44 (h44). This modification is essential to fine-tuning the ribosomal decoding center and increasing decoding fidelity according to studies of a conserved site in Escherichia coli. Here, we reported a series of crystal structures of human METTL15-hsRBFA-h44-SAM analog, METTL15-hsRBFA-SAM, METTL15-SAM and apo METTL15. The structures presented specific interactions of METTL15 with different substrates and revealed that hsRBFA recruits METTL15 to mitochondrial small subunit for further modification instead of 12 S rRNA. Finally, we found that METTL15 deficiency caused increased reactive oxygen species, decreased membrane potential and altered cellular metabolic state. Knocking down METTL15 caused an elevated lactate secretion and increased levels of histone H4K12-lactylation and H3K9-lactylation. METTL15 might be a suitable model to study the regulation between mitochondrial metabolism and histone lactylation.

14.
Chem Commun (Camb) ; 60(6): 762-765, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38126399

RESUMO

The formation of membrane-less organelles is driven by multivalent weak interactions while mediation of such interactions by small molecules remains an unparalleled challenge. Here, we uncovered a bivalent inhibitor that blocked the recruitment of TDRD3 by the two methylated arginines of G3BP1. Relative to the monovalent inhibitor, this bivalent inhibitor demonstrated an enhanced binding affinity to TDRD3 and capability to suppress the phase separation of methylated G3BP1, TDRD3, and RNAs, and in turn inhibit the stress granule growth in cells. Our result paves a new path to mediate multivalent interactions involved in SG assembly for potential combinational chemotherapy by bivalent inhibitors.


Assuntos
DNA Helicases , RNA Helicases , DNA Helicases/metabolismo , RNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Separação de Fases , Grânulos Citoplasmáticos/metabolismo
15.
J Mol Cell Biol ; 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777834

RESUMO

Shugoshin-1 (Sgo1) is necessary for maintaining sister centromere cohesion and ensuring accurate chromosome segregation during mitosis. It has been reported that the localization of Sgo1 at the centromere is dependent on Bub1-mediated phosphorylation of histone H2A at T120. However, it remains uncertain whether other centromeric proteins play a role in regulating the localization and function of Sgo1 during mitosis. Here, we show that CENP-A interacts with Sgo1 and determines the localization of Sgo1 to the centromere during mitosis. Further biochemical characterization revealed that lysine and arginine residues in the C-terminal domain of Sgo1 are critical for binding CENP-A. Interestingly, the replacement of these basic amino acids with acidic amino acids perturbed the localization of Sgo1 and Aurora B to the centromere, resulting in aberrant chromosome segregation and premature chromatid separation. Taken together, these findings reveal a previously unrecognized but direct link between Sgo1 and CENP-A in centromere plasticity control and illustrate how the Sgo1-CENP-A interaction guides accurate cell division.

16.
Proc Natl Acad Sci U S A ; 120(43): e2308870120, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37844242

RESUMO

E3 ubiquitin ligases determine the specificity of eukaryotic protein degradation by selective binding to destabilizing protein motifs, termed degrons, in substrates for ubiquitin-mediated proteolysis. The exposed C-terminal residues of proteins can act as C-degrons that are recognized by distinct substrate receptors (SRs) as part of dedicated cullin-RING E3 ubiquitin ligase (CRL) complexes. APPBP2, an SR of Cullin 2-RING ligase (CRL2), has been shown to recognize R-x-x-G/C-degron; however, the molecular mechanism of recognition remains elusive. By solving several cryogenic electron microscopy structures of active CRL2APPBP2 bound with different R-x-x-G/C-degrons, we unveiled the molecular mechanisms underlying the assembly of the CRL2APPBP2 dimer and tetramer, as well as C-degron recognition. The structural study, complemented by binding experiments and cell-based assays, demonstrates that APPBP2 specifically recognizes the R-x-x-G/C-degron via a bipartite mechanism; arginine and glycine, which play critical roles in C-degron recognition, accommodate distinct pockets that are spaced by two residues. In addition, the binding pocket is deep enough to enable the interaction of APPBP2 with the motif placed at or up to three residues upstream of the C-end. Overall, our study not only provides structural insight into CRL2APPBP2-mediated protein turnover but also serves as the basis for future structure-based chemical probe design.


Assuntos
Proteínas Culina , Ubiquitina , Ubiquitina/metabolismo , Proteínas Culina/metabolismo , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Motivos de Aminoácidos
17.
PLoS Biol ; 21(8): e3002247, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37590302

RESUMO

Mitochondria are in a constant balance of fusion and fission. Excessive fission or deficient fusion leads to mitochondrial fragmentation, causing mitochondrial dysfunction and physiological disorders. How the cell prevents excessive fission of mitochondria is not well understood. Here, we report that the fission yeast AAA-ATPase Yta4, which is the homolog of budding yeast Msp1 responsible for clearing mistargeted tail-anchored (TA) proteins on mitochondria, plays a critical role in preventing excessive mitochondrial fission. The absence of Yta4 leads to mild mitochondrial fragmentation in a Dnm1-dependent manner but severe mitochondrial fragmentation upon induction of mitochondrial depolarization. Overexpression of Yta4 delocalizes the receptor proteins of Dnm1, i.e., Fis1 (a TA protein) and Mdv1 (the bridging protein between Fis1 and Dnm1), from mitochondria and reduces the localization of Dnm1 to mitochondria. The effect of Yta4 overexpression on Fis1 and Mdv1, but not Dnm1, depends on the ATPase and translocase activities of Yta4. Moreover, Yta4 interacts with Dnm1, Mdv1, and Fis1. In addition, Yta4 competes with Dnm1 for binding Mdv1 and decreases the affinity of Dnm1 for GTP and inhibits Dnm1 assembly in vitro. These findings suggest a model, in which Yta4 inhibits mitochondrial fission by inhibiting the function of the mitochondrial divisome composed of Fis1, Mdv1, and Dnm1. Therefore, the present work reveals an uncharacterized molecular mechanism underlying the inhibition of mitochondrial fission.


Assuntos
Demência Frontotemporal , Schizosaccharomyces , Humanos , ATPases Associadas a Diversas Atividades Celulares/genética , Dinâmica Mitocondrial , Adenosina Trifosfatases , Mitocôndrias , Schizosaccharomyces/genética
18.
Lab Chip ; 23(16): 3615-3627, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37458395

RESUMO

Fluorescence imaging flow cytometry (IFC) has been demonstrated as a crucial biomedical technique for analyzing specific cell subpopulations from heterogeneous cellular populations. However, the high-speed flow of fluorescent cells leads to motion blur in cell images, making it challenging to identify cell types from the raw images. In this study, we present a real-time single-cell imaging and classification system based on a fluorescence microscope and deep learning algorithm, which is able to directly identify cell types from motion-blur images. To obtain annotated datasets of blurred images for deep learning model training, we developed a motion deblurring algorithm for the reconstruction of blur-free images. To demonstrate the ability of this system, deblurred images of HeLa cells with various fluorescent labels and HeLa cells at different cell cycle stages were acquired. The trained ResNet achieved a high accuracy of 96.6% for single-cell classification of HeLa cells in three different mitotic stages, with a short processing time of only 2 ms. This technology provides a simple way to realize single-cell fluorescence IFC and real-time cell classification, offering significant potential in various biological and medical applications.


Assuntos
Aprendizado Profundo , Humanos , Células HeLa , Citometria de Fluxo , Algoritmos , Imagem Óptica , Processamento de Imagem Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...