Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Natl Sci Rev ; 6(1): 145-154, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34691840

RESUMO

In this paper, we will give a general introduction to the Ali CMB Polarization Telescope (AliCPT) project, which is a Sino-US joint project led by the Institute of High Energy Physics and involves many different institutes in China. It is the first ground-based Cosmic Microwave Background (CMB) polarization experiment in China and an integral part of China's Gravitational-wave Program. The main scientific goal of the AliCPT project is to probe the primordial gravitational waves (PGWs) originating from the very early Universe. The AliCPT project includes two stages. The first stage, referred to as AliCPT-1, is to build a telescope in the Ali region of Tibet at an altitude of 5250 meters. Once completed, it will be the highest ground-based CMB observatory in the world and will open a new window for probing PGWs in the northern hemisphere. The AliCPT-1 telescope is designed to have about 7000 transition-edge sensor detectors at 95 GHz and 150 GHz. The second stage is to have a more sensitive telescope (AliCPT-2) with more than 20 000 detectors. Our simulations show that AliCPT will improve the current constraint on the tensor-to-scalar ratio r by one order of magnitude with three years' observation. Besides the PGWs, AliCPT will also enable a precise measurement of the CMB rotation angle and provide a precise test of the CPT symmetry. We show that three years' observation will improve the current limit by two orders of magnitude.

2.
Nature ; 549(7670): 70-73, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28825708

RESUMO

An arbitrary unknown quantum state cannot be measured precisely or replicated perfectly. However, quantum teleportation enables unknown quantum states to be transferred reliably from one object to another over long distances, without physical travelling of the object itself. Long-distance teleportation is a fundamental element of protocols such as large-scale quantum networks and distributed quantum computation. But the distances over which transmission was achieved in previous teleportation experiments, which used optical fibres and terrestrial free-space channels, were limited to about 100 kilometres, owing to the photon loss of these channels. To realize a global-scale 'quantum internet' the range of quantum teleportation needs to be greatly extended. A promising way of doing so involves using satellite platforms and space-based links, which can connect two remote points on Earth with greatly reduced channel loss because most of the propagation path of the photons is in empty space. Here we report quantum teleportation of independent single-photon qubits from a ground observatory to a low-Earth-orbit satellite, through an uplink channel, over distances of up to 1,400 kilometres. To optimize the efficiency of the link and to counter the atmospheric turbulence in the uplink, we use a compact ultra-bright source of entangled photons, a narrow beam divergence and high-bandwidth and high-accuracy acquiring, pointing and tracking. We demonstrate successful quantum teleportation of six input states in mutually unbiased bases with an average fidelity of 0.80 ± 0.01, well above the optimal state-estimation fidelity on a single copy of a qubit (the classical limit). Our demonstration of a ground-to-satellite uplink for reliable and ultra-long-distance quantum teleportation is an essential step towards a global-scale quantum internet.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...