Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aquac Nutr ; 2024: 6682798, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38274322

RESUMO

We investigated the effects of dietary tannic acid (TA) supplementation of a high-carbohydrate diet on growth, feed utilization, whole-body proximate composition, serum biochemical indicators, antioxidant capacity, digestive enzyme activity, and liver and intestinal health of juvenile largemouth bass, Micropterus salmoides (initial mean weight: 8.08 ± 0.08 g). Five diets were prepared, including a positive control (dietary carbohydrate level, 16%, LC0), a negative control (dietary carbohydrate level, 21%, HC0), and three TA-supplementation diets based on the negative control diet with TA addition at 200, 400, and 800 mg/kg, respectively. After 8 weeks of feeding, the results showed that compared with the LC0 diet, 400-800 mg/kg dietary TA significantly improved the survival rate of largemouth bass (P < 0.05) while significantly reducing its weight-gain rate and specific growth rate (P < 0.05). Compared with the HC0 diet, 400 mg/kg dietary TA significantly increased serum catalase activity (P < 0.05), and significantly decreased serum malondialdehyde, liver glycogen, lightness (L ∗), and yellowness (b ∗) (P < 0.05). Moreover, compared with the HC0 diet, 200-400 mg/kg dietary TA effectively improved the vacuolation of hepatocytes caused by the high-carbohydrate diet and reduced the occurrence of intestinal epithelial cell vacuolation and necrosis. In turn, 800 mg/kg dietary TA significantly inhibited protease activity in the pyloric caecum and intestine (P < 0.05). In conclusion, dietary supplementation with TA inhibited protease activity, which resulted in decreased growth performance in largemouth bass. However, it was also found that 200-400 mg/kg TA enhanced the antioxidant capacity of largemouth bass in the case of the high-carbohydrate diet, reduced liver glycogen levels, and improved liver and intestinal health. Finally, it should be noted that, when the dietary TA level exceeded 800 mg/kg, TA appeared to play a pro-oxidation role in the liver, which may cause oxidative stress in the liver.

2.
RSC Adv ; 9(55): 31988-31998, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-35530805

RESUMO

Oxidative stress is more likely to occur in the intestine compared to other organs because it is located at the interface between an organism and its luminal environment. Tannic acid (TA) is reported to serve as an antioxidant, antimicrobial, anticarcinogenic and antimutagenic agent in various models. In the present study, we evaluated the effects of TA on body weight, intestinal morphology, antioxidative activity, and intestinal barrier in diquat-induced oxidative stress mouse model. The results showed that TA had failed to affect antioxidative enzymes in diquat-challenged mice, while the concentration of 2.5 mg kg-1 to 10 mg kg-1 TA had no negative effect on body weight and enhanced the colon length in mice. The dose of 2.5 mg kg-1 TA ameliorated the morphological damage in the jejunum by increasing the villus height and crypt depth, activated the antioxidative pathway by decreasing jejunal protein expression of Kelch like-ECH-associated protein 1 (KEAP1) and increasing protein expression of Nuclear factor erythroid 2-related factor 2 (NRF2), and affected the intestinal barrier by inhibiting the jejunal mRNA expression of claudin and promoting mRNA expression of zonula occludens (zo-1). In conclusion, the pretreatment of TA in a mouse model of oxidative stress failed to change the antioxidative enzymes but modulated the jejunal morphology, colon length, antioxidative pathway and intestinal barrier in the diquat oxidative model.

3.
Metab Eng ; 19: 79-87, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23774671

RESUMO

Salvianic acid A, a valuable derivative from L-tyrosine biosynthetic pathway of the herbal plant Salvia miltiorrhiza, is well known for its antioxidant activities and efficacious therapeutic potential on cardiovascular diseases. Salvianic acid A was traditionally isolated from plant root or synthesized by chemical methods, both of which had low efficiency. Herein, we developed an unprecedented artificial biosynthetic pathway of salvianic acid A in E. coli, enabling its production from glucose directly. In this pathway, 4-hydroxyphenylpyruvate was converted to salvianic acid A via D-lactate dehydrogenase (encoding by d-ldh from Lactobacillus pentosus) and hydroxylase complex (encoding by hpaBC from E. coli). Furthermore, we optimized the pathway by a modular engineering approach and deleting genes involved in the regulatory and competing pathways. The metabolically engineered E. coli strain achieved high productivity of salvianic acid A (7.1g/L) with a yield of 0.47mol/mol glucose.


Assuntos
Ácidos Cafeicos/metabolismo , Escherichia coli/metabolismo , Glucose/metabolismo , Lactatos/metabolismo , Engenharia Metabólica , Escherichia coli/genética , Lactato Desidrogenases/biossíntese , Lactato Desidrogenases/genética , Lactobacillus/enzimologia , Lactobacillus/genética , Oxigenases de Função Mista/biossíntese , Oxigenases de Função Mista/genética , Raízes de Plantas/metabolismo , Salvia miltiorrhiza/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA