Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(25): 13805-13815, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37317527

RESUMO

The alkaline hydrogen oxidation reaction (HOR) involves the coupling of adsorbed hydrogen (Had) and hydroxyl (OHad) species and is thus orders of magnitude slower than that in acid media. According to the Sabatier principle, developing electrocatalysts with appropriate binding energy for both intermediates is vital to accelerating the HOR though it is still challenging. Herein, we propose an unconventional bilateral compressive strained Ni-Ir interface (Ni-Ir(BCS)) as efficient synergistic HOR sites. Density functional theory (DFT) simulations reveal that the bilateral compressive strain effect leads to the appropriate adsorption for both Had and OHad, enabling their coupling thermodynamically spontaneous and kinetically preferential. Such Ni-Ir(BCS) is experimentally achieved by embedding sub-nanometer Ir clusters in graphene-loaded high-density Ni nanocrystals (Ni-Ir(BCS)/G). As predicted, it exhibits a HOR mass activity of 7.95 and 2.88 times those of commercial Ir/C and Pt/C together with much enhanced CO tolerance, respectively, ranking among the most active state-of-the-art HOR catalysts. These results provide new insights into the rational design of advanced electrocatalysts involving coordinated adsorption and activation of multiple reactants.

2.
Nat Commun ; 14(1): 1822, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005416

RESUMO

Anion-exchange membrane fuel cells and Zn-air batteries based on non-Pt group metal catalysts typically suffer from sluggish cathodic oxygen reduction. Designing advanced catalyst architectures to improve the catalyst's oxygen reduction activity and boosting the accessible site density by increasing metal loading and site utilization are potential ways to achieve high device performances. Herein, we report an interfacial assembly strategy to achieve binary single-atomic Fe/Co-Nx with high mass loadings through constructing a nanocage structure and concentrating high-density accessible binary single-atomic Fe/Co-Nx sites in a porous shell. The prepared FeCo-NCH features metal loading with a single-atomic distribution as high as 7.9 wt% and an accessible site density of around 7.6 × 1019 sites g-1, surpassing most reported M-Nx catalysts. In anion exchange membrane fuel cells and zinc-air batteries, the FeCo-NCH material delivers peak power densities of 569.0 or 414.5 mW cm-2, 3.4 or 2.8 times higher than control devices assembled with FeCo-NC. These results suggest that the present strategy for promoting catalytic site utilization offers new possibilities for exploring efficient low-cost electrocatalysts to boost the performance of various energy devices.

3.
ACS Nano ; 16(4): 5153-5183, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35420784

RESUMO

With the potential to circumvent the need for scarce and cost-prohibitive platinum-based catalysts in proton-exchange membrane fuel cells, anion-exchange membrane fuel cells (AEMFCs) are emerging as alternative technologies with zero carbon emission. Numerous noble metal-free catalysts have been developed with excellent catalytic performance for cathodic oxygen reduction reaction in AEMFCs. However, the anodic catalysts for hydrogen oxidation reaction (HOR) still rely on noble metal materials. Since the kinetics of HOR in alkaline media is 2-3 orders of magnitude lower than that in acidic media, it is a major challenge to either improve the performance of noble metal catalysts or to develop high-performance noble metal-free catalysts. Additionally, the mechanisms of alkaline HOR are not yet clear and still under debate, further hampering the design of electrocatalysts. Against this backdrop, this review starts with the prevailing theories for alkaline HOR on the basis of diverse activity descriptors, i.e., hydrogen binding energy theory and bifunctional theory. The design principles and recent advances of HOR catalysts employing the aforementioned theories are then summarized. Next, the strategies and recent progress in improving the antioxidation capability of HOR catalysts, a thorny issue which has not received sufficient attention, are discussed. Moreover, the significance of correlating computational models with real catalyst structure and the electrode/electrolyte interface is further emphasized. Lastly, the remaining controversies about the alkaline HOR mechanisms as well as the challenges and possible research directions in this field are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...