Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 868
Filtrar
1.
Cancer Lett ; 592: 216934, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38710299

RESUMO

The Staphylococcal nuclease and Tudor domain containing 1 (SND1) has been identified as an oncoprotein. Our previous study demonstrated that SND1 impedes the major histocompatibility complex class I (MHC-I) assembly by hijacking the nascent heavy chain of MHC-I to endoplasmic reticulum-associated degradation. Herein, we aimed to identify inhibitors to block SND1-MHC-I binding, to facilitate the MHC-I presentation and tumor immunotherapy. Our findings validated the importance of the K490-containing sites in SND1-MHC-I complex. Through structure-based virtual screening and docking analysis, (-)-Epigallocatechin (EGC) exhibited the highest docking score to prevent the binding of MHC-I to SND1 by altering the spatial conformation of SND1. Additionally, EGC treatment resulted in increased expression levels of membrane-presented MHC-I in tumor cells. The C57BL/6J murine orthotopic melanoma model validated that EGC increases infiltration and activity of CD8+ T cells in both the tumor and spleen. Furthermore, the combination of EGC with programmed death-1 (PD-1) antibody demonstrated a superior antitumor effect. In summary, we identified EGC as a novel inhibitor of SND1-MHC-I interaction, prompting MHC-I presentation to improve CD8+ T cell response within the tumor microenvironment. This discovery presents a promising immunotherapeutic candidate for tumors.

2.
J Am Heart Assoc ; 13(9): e034731, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38700011

RESUMO

BACKGROUND: Cardiac damage induced by ischemic stroke, such as arrhythmia, cardiac dysfunction, and even cardiac arrest, is referred to as cerebral-cardiac syndrome (CCS). Cardiac macrophages are reported to be closely associated with stroke-induced cardiac damage. However, the role of macrophage subsets in CCS is still unclear due to their heterogeneity. Sympathetic nerves play a significant role in regulating macrophages in cardiovascular disease. However, the role of macrophage subsets and sympathetic nerves in CCS is still unclear. METHODS AND RESULTS: In this study, a middle cerebral artery occlusion mouse model was used to simulate ischemic stroke. ECG and echocardiography were used to assess cardiac function. We used Cx3cr1GFPCcr2RFP mice and NLRP3-deficient mice in combination with Smart-seq2 RNA sequencing to confirm the role of macrophage subsets in CCS. We demonstrated that ischemic stroke-induced cardiac damage is characterized by severe cardiac dysfunction and robust infiltration of monocyte-derived macrophages into the heart. Subsequently, we identified that cardiac monocyte-derived macrophages displayed a proinflammatory profile. We also observed that cardiac dysfunction was rescued in ischemic stroke mice by blocking macrophage infiltration using a CCR2 antagonist and NLRP3-deficient mice. In addition, a cardiac sympathetic nerve retrograde tracer and a sympathectomy method were used to explore the relationship between sympathetic nerves and cardiac macrophages. We found that cardiac sympathetic nerves are significantly activated after ischemic stroke, which contributes to the infiltration of monocyte-derived macrophages and subsequent cardiac dysfunction. CONCLUSIONS: Our findings suggest a potential pathogenesis of CCS involving the cardiac sympathetic nerve-monocyte-derived macrophage axis.


Assuntos
Modelos Animais de Doenças , AVC Isquêmico , Macrófagos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , AVC Isquêmico/fisiopatologia , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Receptores CCR2/genética , Receptores CCR2/metabolismo , Masculino , Camundongos Knockout , Camundongos , Infarto da Artéria Cerebral Média/fisiopatologia , Infarto da Artéria Cerebral Média/patologia , Sistema Nervoso Simpático/fisiopatologia , Miocárdio/patologia , Miocárdio/metabolismo , Cardiopatias/etiologia , Cardiopatias/fisiopatologia , Cardiopatias/patologia , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Receptor 1 de Quimiocina CX3C/deficiência
3.
Nat Metab ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561509

RESUMO

Disruption of circadian rhythm during pregnancy produces adverse health outcomes in offspring; however, the role of maternal circadian rhythms in the immune system of infants and their susceptibility to inflammation remains poorly understood. Here we show that disruption of circadian rhythms in pregnant mice profoundly aggravates the severity of neonatal inflammatory disorders in both male and female offspring, such as necrotizing enterocolitis and sepsis. The diminished maternal production of docosahexaenoic acid (DHA) and the impaired immunosuppressive function of neonatal myeloid-derived suppressor cells (MDSCs) contribute to this phenomenon. Mechanistically, DHA enhances the immunosuppressive function of MDSCs via PPARγ-mediated mitochondrial oxidative phosphorylation. Transfer of MDSCs or perinatal supplementation of DHA relieves neonatal inflammation induced by maternal rhythm disruption. These observations collectively demonstrate a previously unrecognized role of maternal circadian rhythms in the control of neonatal inflammation via metabolic reprograming of myeloid cells.

4.
Chin J Integr Med ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38570473

RESUMO

OBJECTIVE: To investigate whether Naoxueshu Oral Liquid (NXS) could promote hematoma absorption in post-craniotomy hematoma (PCH) patients. METHODS: This is an open-label, multicenter, and randomized controlled trial conducted at 9 hospitals in China. Patients aged 18-80 years with post-craniotomy supratentorial hematoma volume ranging from 10 to 30 mL or post-craniotomy infratentorial hematoma volume less than 10 mL, or intraventricular hemorrhage following cranial surgery were enrolled. They were randomly assigned at a 1:1 ratio to the NXS (10 mL thrice daily for 15 days) or control groups using a randomization code table. Standard medical care was administered in both groups. The primary outcome was the percentage reduction in hematoma volume from day 1 to day 15. The secondary outcomes included the percentage reduction in hematoma volume from day 1 to day 7, the absolute reduction in hematoma volume from day 1 to day 7 and 15, and the change in neurological function from day 1 to day 7 and 15. The safety was closely monitored throughout the study. Moreover, subgroup analysis was performed based on age, gender, history of diabetes, and etiology of intracerebral hemorrhage (ICH). RESULTS: A total of 120 patients were enrolled and randomly assigned between March 30, 2018 and April 15, 2020. One patient was lost to follow-up in the control group. Finally, there were 119 patients (60 in the NXS group and 59 in the control group) included in the analysis. In the full analysis set (FAS) analysis, the NXS group had a greater percentage reduction in hematoma volume from day 1 to day 15 than the control group [median (Q1, Q3): 85% (71%, 97%) vs. 76% (53%, 93%), P<0.05]. The secondary outcomes showed no statistical significance between two groups, either in FAS or per-protocol set (P>0.05). Furthermore, no adverse events were reported during the study. In the FAS analysis, the NXS group exhibited a higher percentage reduction in hematoma volume on day 15 in the following subgroups: male patients, patients younger than 65 years, patients without diabetes, or those with initial cranial surgery due to ICH (all P<0.05). CONCLUSIONS: The administration of NXS demonstrated the potential to promote the percentage reduction in hematoma volume from day 1 to day 15. This intervention was found to be safe and feasible. The response to NXS may be influenced by patient characteristics. (Registration No. ChiCTR1800017981).

6.
Cell Mol Immunol ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632385

RESUMO

Neonates are susceptible to inflammatory disorders such as necrotizing enterocolitis (NEC) due to their immature immune system. The timely appearance of regulatory immune cells in early life contributes to the control of inflammation in neonates, yet the underlying mechanisms of which remain poorly understood. In this study, we identified a subset of neonatal monocytes characterized by high levels of neuropilin-1 (Nrp1), termed Nrp1high monocytes. Compared with their Nrp1low counterparts, Nrp1high monocytes displayed potent immunosuppressive activity. Nrp1 deficiency in myeloid cells aggravated the severity of NEC, whereas adoptive transfer of Nrp1high monocytes led to remission of NEC. Mechanistic studies showed that Nrp1, by binding to its ligand Sema4a, induced intracellular p38-MAPK/mTOR signaling and activated the transcription factor KLF4. KLF4 transactivated Nos2 and enhanced the production of nitric oxide (NO), a key mediator of immunosuppression in monocytes. These findings reveal an important immunosuppressive axis in neonatal monocytes and provide a potential therapeutic strategy for treating inflammatory disorders in neonates.

7.
Nat Mater ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622325

RESUMO

A magnon is a collective excitation of the spin structure in a magnetic insulator and can transmit spin angular momentum with negligible dissipation. This quantum of a spin wave has always been manipulated through magnetic dipoles (that is, by breaking time-reversal symmetry). Here we report the experimental observation of chiral spin transport in multiferroic BiFeO3 and its control by reversing the ferroelectric polarization (that is, by breaking spatial inversion symmetry). The ferroelectrically controlled magnons show up to 18% modulation at room temperature. The spin torque that the magnons in BiFeO3 carry can be used to efficiently switch the magnetization of adjacent magnets, with a spin-torque efficiency comparable to the spin Hall effect in heavy metals. Utilizing such controllable magnon generation and transmission in BiFeO3, an all-oxide, energy-scalable logic is demonstrated composed of spin-orbit injection, detection and magnetoelectric control. Our observations open a new chapter of multiferroic magnons and pave another path towards low-dissipation nanoelectronics.

8.
Front Mol Neurosci ; 17: 1370509, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38685916

RESUMO

Targeted protein degradation (TPD) is a rapidly expanding field, with various PROTACs (proteolysis-targeting chimeras) in clinical trials and molecular glues such as immunomodulatory imide drugs (IMiDs) already well established in the treatment of certain blood cancers. Many current approaches are focused on oncology targets, leaving numerous potential applications underexplored. Targeting proteins for degradation offers a novel therapeutic route for targets whose inhibition remains challenging, such as protein aggregates in neurodegenerative diseases. This mini review focuses on the prospect of utilizing TPD for neurodegenerative disease targets, particularly PROTAC and molecular glue formats and opportunities for novel CNS E3 ligases. Some key challenges of utilizing such modalities including molecular design of degrader molecules, drug delivery and blood brain barrier penetrance will be discussed.

9.
J Orthop Surg Res ; 19(1): 269, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685055

RESUMO

PURPOSE: This study aims to assess the effectiveness of Percutaneous Endoscopic Posterior Lumbar Interbody Fusion (PE-PLIF) combined with a novel Unilateral Laminotomy for Bilateral Decompression (ULBD) approach using a large-channel endoscope in treating Lumbar Degenerative Diseases (LDD). METHODS: This retrospective analysis evaluates 41 LDD patients treated with PE-PLIF and ULBD from January 2021 to June 2023. A novel ULBD approach, called 'Non-touch Over-Top' technique, was utilized in this study. We compared preoperative and postoperative metrics such as demographic data, Visual Analogue Scale (VAS) for pain, Oswestry Disability Index (ODI), Japanese Orthopedic Association (JOA) score, surgical details, and radiographic changes. RESULTS: The average follow-up duration was 14.41 ± 2.86 months. Notable improvements were observed postoperatively in VAS scores for back and leg pain (from 5.56 ± 0.20 and 6.95 ± 0.24 to 0.20 ± 0.06 and 0.12 ± 0.05), ODI (from 58.68 ± 0.80% to 8.10 ± 0.49%), and JOA scores (from 9.37 ± 0.37 to 25.07 ± 0.38). Radiographic measurements showed significant improvements in lumbar and segmental lordosis angles, disc height, and spinal canal area. A high fusion rate (97.56% at 6 months, 100% at 12 months) and a low cage subsidence rate (2.44%) were noted. CONCLUSIONS: PE-PLIF combined with the novel ULBD technique via a large-channel endoscope offers significant short-term benefits for LDD management. The procedure effectively expands spinal canal volume, decompresses nerve structures, improves lumbar alignment, and stabilizes the spine. Notably, it improves patients' quality of life and minimizes complications, highlighting its potential as a promising LDD treatment option.


Assuntos
Descompressão Cirúrgica , Endoscopia , Degeneração do Disco Intervertebral , Vértebras Lombares , Fusão Vertebral , Humanos , Estudos Retrospectivos , Masculino , Feminino , Pessoa de Meia-Idade , Vértebras Lombares/cirurgia , Vértebras Lombares/diagnóstico por imagem , Fusão Vertebral/métodos , Endoscopia/métodos , Descompressão Cirúrgica/métodos , Resultado do Tratamento , Idoso , Degeneração do Disco Intervertebral/cirurgia , Degeneração do Disco Intervertebral/diagnóstico por imagem , Seguimentos , Adulto , Laminectomia/métodos
10.
Cell Biol Toxicol ; 40(1): 23, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630355

RESUMO

Cytosolic thiouridylase 2 (CTU2) is an enzyme modifying transfer RNAs post-transcriptionally, which has been implicated in breast cancer and melanoma development. And we found CTU2 participated in hepatocellular carcinoma (HCC) progression here. HepG2 cells as well as xenograft nude mice model were employed to investigate the role of CTU2 in HCC development in vitro and in vivo respectively. Further, we defined CTU2 as a Liver X receptor (LXR) targeted gene, with a typical LXR element in the CTU2 promoter. CTU2 expression was activated by LXR agonist and depressed by LXR knockout. Interestingly, we also found CTU2 took part in lipogenesis by directly enhancing the synthesis of lipogenic proteins, which provided a novel mechanism for LXR regulating lipid synthesis. Meanwhile, lipogenesis was active during cell proliferation, particularly in tumor cells. Reduction of CTU2 expression was related to reduced tumor burden and synergized anti-tumor effect of LXR ligands by inducing tumor cell apoptosis and inhibiting cell proliferation. Taken together, our study identified CTU2 as an LXR target gene. Inhibition of CTU2 expression could enhance the anti-tumor effect of LXR ligand in HCC, identifying CTU2 as a promising target for HCC treatment and providing a novel strategy for the application of LXR agonists in anti-tumor effect.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Receptores X do Fígado , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama , Carcinoma Hepatocelular/genética , Modelos Animais de Doenças , Neoplasias Hepáticas/genética , Receptores X do Fígado/genética , Camundongos Nus
11.
Exp Neurol ; 376: 114773, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599368

RESUMO

BACKGROUND: Arrhythmia is the most common cardiac complication after ischemic stroke. Connexin 40 is the staple component of gap junctions, which influences the propagation of cardiac electrical signals in the sinoatrial node. However, the role of connexin 40 in post-stroke arrhythmia remains unclear. METHODS: In this study, a permanent middle cerebral artery occlusion model was used to simulate the occurrence of an ischemic stroke. Subsequently, an electrocardiogram was utilized to record and assess variations in electrocardiogram measures. In addition, optical tissue clearing and whole-mount immunofluorescence staining were used to confirm the anatomical localization of the sinoatrial node, and the sinoatrial node tissue was collected for RNA sequencing to screen for potential pathological mechanisms. Lastly, the rAAV9-Gja5 virus was injected with ultrasound guidance into the heart to increase Cx40 expression in the sinoatrial node. RESULTS: We demonstrated that the mice suffering from a permanent middle cerebral artery occlusion displayed significant arrhythmia, including atrial fibrillation, premature ventricular contractions, atrioventricular block, and abnormal electrocardiogram parameters. Of note, we observed a decrease in connexin 40 expression within the sinoatrial node after the ischemic stroke via RNA sequencing and western blot. Furthermore, rAAV9-Gja5 treatment ameliorated the occurrence of arrhythmia following stroke. CONCLUSIONS: In conclusion, decreased connexin 40 expression in the sinoatrial node contributed to the ischemic stroke-induced cardiac arrhythmia. Therefore, enhancing connexin 40 expression holds promise as a potential therapeutic approach for ischemic stroke-induced arrhythmia.


Assuntos
Arritmias Cardíacas , Conexinas , Proteína alfa-5 de Junções Comunicantes , AVC Isquêmico , Camundongos Endogâmicos C57BL , Nó Sinoatrial , Animais , Conexinas/genética , Conexinas/metabolismo , Conexinas/biossíntese , Camundongos , Nó Sinoatrial/metabolismo , AVC Isquêmico/metabolismo , AVC Isquêmico/genética , AVC Isquêmico/patologia , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/genética , Masculino
12.
Ther Clin Risk Manag ; 20: 161-168, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476881

RESUMO

Background: Studies of chylothorax after congenital heart disease in infants are rare. Chylothorax has a higher incidence in infancy, but its risk factors are not well understood. Objective: The purpose of this study is to investigate the risk factors of chylothorax after congenital heart surgery in infants. Methods: This retrospective study included 176 infants who underwent congenital heart disease surgery at the Guangdong Cardiovascular Institute, China, between 2016 and 2020. According to the occurrence of chylothorax, the patients were divided into a control group (n = 88) and a case group (n = 88). Univariate and multivariate logistic regression were performed to analyse the incidence and influencing factors of chylothorax after congenital heart surgery in infants. Results: Between 2016 and 2020, the annual incidence rate fluctuated between 1.55% and 3.17%, and the total incidence of chylothorax was 2.02%. Multivariate logistic regression analysis showed that postoperative albumin (p = 0.041; odds ratio [OR] = 0.095), preoperative mechanical ventilation (p = 0.001; OR = 1.053) and preterm birth (p = 0.002; OR = 5.783) were risk factors for postoperative chylothorax in infants with congenital heart disease. Conclusion: The total incidence of chylothorax was 2.02% and the annual incidence rate fluctuated between 1.55% and 3.17% between 2016 and 2020. Premature infants, longer preoperative mechanical ventilation and lower albumin after congenital heart surgery may be risk factors for chylothorax. In addition, infants with chylothorax are inclined to be infected, need more respiratory support, use a chest drainage tube for longer and remain longer in hospital.

13.
J Transl Med ; 22(1): 316, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549133

RESUMO

BACKGROUND: Propofol is a widely used anesthetic and sedative, which has been reported to exert an anti-inflammatory effect. TLR4 plays a critical role in coordinating the immuno-inflammatory response during sepsis. Whether propofol can act as an immunomodulator through regulating TLR4 is still unclear. Given its potential as a sepsis therapy, we investigated the mechanisms underlying the immunomodulatory activity of propofol. METHODS: The effects of propofol on TLR4 and Rab5a (a master regulator involved in intracellular trafficking of immune factors) were investigated in macrophage (from Rab5a-/- and WT mice) following treatment with lipopolysaccharide (LPS) or cecal ligation and puncture (CLP) in vitro and in vivo, and peripheral blood monocyte from sepsis patients and healthy volunteers. RESULTS: We showed that propofol reduced membrane TLR4 expression on macrophages in vitro and in vivo. Rab5a participated in TLR4 intracellular trafficking and both Rab5a expression and the interaction between Rab5a and TLR4 were inhibited by propofol. We also showed Rab5a upregulation in peripheral blood monocytes of septic patients, accompanied by increased TLR4 expression on the cell surface. Propofol downregulated the expression of Rab5a and TLR4 in these cells. CONCLUSIONS: We demonstrated that Rab5a regulates intracellular trafficking of TLR4 and that propofol reduces membrane TLR4 expression on macrophages by targeting Rab5a. Our study not only reveals a novel mechanism for the immunomodulatory effect of propofol but also indicates that Rab5a may be a potential therapeutic target against sepsis.


Assuntos
Propofol , Sepse , Camundongos , Humanos , Animais , Propofol/farmacologia , Propofol/uso terapêutico , Propofol/metabolismo , Receptor 4 Toll-Like/metabolismo , Modelos Animais de Doenças , Macrófagos/metabolismo , Sepse/complicações , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-38521445

RESUMO

The MARK2 gene, coding microtubule affinity-regulating kinase or serine/threonine protein kinase, is an important modulator in organism microtubule generation and cell polarity. However, its role in the metamorphosis of insects remains unknown. In this study, we found a conserved miRNA, miR-7-5p, which targets MARK2 to participate in the regulation of the larval-pupal metamorphosis in Galeruca daurica. The dual luciferase reporter assay showed that miR-7-5p interacted with the 3' UTR of MARK2 and repressed its expression. The expression profiling of miR-7-5p and MARK2 displayed an opposite trend during the larval-adult development process. In in-vivo experiments, overexpression of miR-7-5p by injecting miR-7-5p agomir in the final instar larvae down-regulated MARK2 and up-regulated main ecdysone signaling pathway genes including E74, E75, ECR, FTZ-F1 and HR3, which was similar to the results from knockdown of MARK2 by RNAi. In contrast, repression of miR-7-5p by injecting miR-7-5p antagomir obtained opposite effects. Notably, both overexpression and repression of miR-7-5p in the final instar larvae caused abnormal molting and high mortality during the larval-pupal transition, and high mortality during the pupal-adult transition. The 20-hydroxyecdysone (20E) injection experiment showed that 20E up-regulated miR-7-5p whereas down-regulated MARK2. This study reveals that the accurate regulation of miRNAs and their target genes is indispensable for insect metamorphosis.


Assuntos
Besouros , MicroRNAs , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Besouros/genética , Metamorfose Biológica/genética , Ecdisterona/farmacologia , Larva/metabolismo
15.
Environ Sci Pollut Res Int ; 31(17): 25147-25162, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38468006

RESUMO

The comparative study of the transformation among sediment phosphorus (P) fractions in different lake types is a global issue in lake ecosystems. However, interactions between sediment P fractions, environmental factors, and microorganisms vary with the nutrient status of lakes. In this study, we combine sequential extraction and metagenomics sequencing to assess the characteristics of P fractions and transformation in sediments from different lake types in the Inner Mongolian section of the Yellow River Basin. We then further explore the response of relevant microbial and environmental drivers to P fraction transformation and bioavailability in sediments. The sediments of all three lakes exhibited strong exogenous pollution input characteristics, and higher nutritional conditions led to enhanced sediment P fraction transformation ability. The transformation capacity of the sediment P fractions also differed among the different lake types at the same latitudes, which is affected by many factors such as lake environmental factors and microorganisms. Different drivers reflected the mutual control of weakly adsorbed phosphorus (WA-P), potential active phosphorus (PA-P), Fe/Al-bound phosphorus (NaOH-P), and Ca-bound phosphorus (HCl-P) with the bio-directly available phosphorus (Bio-P). The transformation of NaOH-P in reducing environments can improve P bioavailability, while HCl-P is not easily bioavailable in weakly alkaline environments. There were significant differences in the bacterial community diversity and composition between the different lake types at the same latitude (p < 0.05), and the role of P fractions was stronger in the sediments of lakes with rich biodiversity than in poor biodiversity. Lake eutrophication recovery was somewhat hindered by the microbial interactions of P cycling and P fractions within the sediment. This study provides data and theoretical support for exploring the commonalities and differences among different lake types in the Inner Mongolian section of the Yellow River Basin. Besides, it is representative and typical for promoting the optimization of ecological security patterns in ecologically fragile watersheds.


Assuntos
Lagos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Ecossistema , Fósforo/análise , Congelamento , Hidróxido de Sódio , Monitoramento Ambiental , Sedimentos Geológicos , Eutrofização , China
16.
Biomaterials ; 308: 122547, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38537344

RESUMO

Urinary tract infections (UTIs) caused by Uropathogenic Escherichia coli (UPEC), often reoccur due to the formation of intracellular bacterial colonies (IBCs) and antibiotic resistance. Given the significance of YadC for UPEC infection in our previous study, we developed D-xylose-decorated ɛ-poly-L-lysine (εPL)-based carbon dots (D-xyl@εPLCDs) that can be traced, and employed multi-step approaches to elucidate the functional roles of D-xyl@εPLCDs in UPEC infection. Compared to undecorated particles, D-xyl@εPLCDs demonstrate YadC-dependent bacterial targeting and exhibit enhanced bactericidal activities both intracellularly and extracellularly. Moreover, pre-treatment of D-xyl@εPLCDs before infection blocked the subsequent adhesion and invasion of UPEC to bladder epithelial cells 5637. Increase of ROS production and innate immune responses were observed in bladder epithelial cells 5637 treated with D-xyl@εPLCDs. In addition, treatment of D-xyl@εPLCDs post-infection facilitated clearance of UPEC in the bladders of the UTI mouse model, and reduced ultimate number of neutrophils, macrophages and inflammatory responses raised by invaded bacteria. Collectively, we presented a comprehensive evaluating system to show that D-xyl@εPLCDs exhibits superior bactericidal effects against UPEC, making them a promising candidate for drug development in clinical UTI therapeutics.


Assuntos
Carbono , Infecções Urinárias , Escherichia coli Uropatogênica , Xilose , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/microbiologia , Animais , Carbono/química , Carbono/farmacologia , Escherichia coli Uropatogênica/efeitos dos fármacos , Humanos , Camundongos , Feminino , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Infecções por Escherichia coli/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Linhagem Celular , Pontos Quânticos/química , Pontos Quânticos/uso terapêutico
17.
J Clin Invest ; 134(10)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512413

RESUMO

Elevated bone resorption and diminished bone formation have been recognized as the primary features of glucocorticoid-associated skeletal disorders. However, the direct effects of excess glucocorticoids on bone turnover remain unclear. Here, we explored the outcomes of exogenous glucocorticoid treatment on bone loss and delayed fracture healing in mice and found that reduced bone turnover was a dominant feature, resulting in a net loss of bone mass. The primary effect of glucocorticoids on osteogenic differentiation was not inhibitory; instead, they cooperated with macrophages to facilitate osteogenesis. Impaired local nutrient status - notably, obstructed fatty acid transportation - was a key factor contributing to glucocorticoid-induced impairment of bone turnover in vivo. Furthermore, fatty acid oxidation in macrophages fueled the ability of glucocorticoid-liganded receptors to enter the nucleus and then promoted the expression of BMP2, a key cytokine that facilitates osteogenesis. Metabolic reprogramming by localized fatty acid delivery partly rescued glucocorticoid-induced pathology by restoring a healthier immune-metabolic milieu. These data provide insights into the multifactorial metabolic mechanisms by which glucocorticoids generate skeletal disorders, thus suggesting possible therapeutic avenues.


Assuntos
Remodelação Óssea , Glucocorticoides , Osteogênese , Animais , Camundongos , Glucocorticoides/farmacologia , Osteogênese/efeitos dos fármacos , Remodelação Óssea/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 2/genética , Ácidos Graxos/metabolismo , Osso e Ossos/metabolismo , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/imunologia , Microambiente Celular/efeitos dos fármacos
18.
World J Gastrointest Surg ; 16(1): 205-214, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38328333

RESUMO

BACKGROUND: Primary liver cancer is a malignant tumor with a high recurrence rate that significantly affects patient prognosis. Postoperative adjuvant external radiation therapy (RT) has been shown to effectively prevent recurrence after liver cancer resection. However, there are multiple RT techniques available, and the differential effects of these techniques in preventing postoperative liver cancer recurrence require further investigation. AIM: To assess the advantages and disadvantages of various adjuvant external RT methods after liver resection based on overall survival (OS) and disease-free survival (DFS) and to determine the optimal strategy. METHODS: This study involved network meta-analyses and followed the PRISMA guidelines. The data of qualified studies published before July 10, 2023, were collected from PubMed, Embase, the Web of Science, and the Cochrane Library. We included relevant studies on postoperative external beam RT after liver resection that had OS and DFS as the primary endpoints. The magnitudes of the effects were determined using risk ratios with 95% confidential intervals. The results were analyzed using R software and STATA software. RESULTS: A total of 12 studies, including 1265 patients with hepatocellular carcinoma (HCC) after liver resection, were included in this study. There was no significant heterogeneity in the direct paired comparisons, and there were no significant differences in the inclusion or exclusion criteria, intervention measures, or outcome indicators, meeting the assumptions of heterogeneity and transitivity. OS analysis revealed that patients who underwent stereotactic body radiotherapy (SBRT) after resection had longer OS than those who underwent intensity modulated radiotherapy (IMRT) or 3-dimensional conformal RT (3D-CRT). DFS analysis revealed that patients who underwent 3D-CRT after resection had the longest DFS. Patients who underwent IMRT after resection had longer OS than those who underwent 3D-CRT and longer DFS than those who underwent SBRT. CONCLUSION: HCC patients who undergo liver cancer resection must consider distinct advantages and disadvantages when choosing between SBRT and 3D-CRT. IMRT, a RT technique that is associated with longer OS than 3D-CRT and longer DFS than SBRT, may be a preferred option.

19.
Pest Manag Sci ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38385645

RESUMO

BACKGROUND: Galeruca daurica has become a new pest on the Inner Mongolia grasslands since an abrupt outbreak in 2009 caused serious damage. As a pupa indicator during insect metamorphosis, the early response gene of the ecdysone signaling pathway, Broad-Complex (Br-C), plays a vital role in the growth and development of insects. MicroRNAs (miRNAs) are small non-coding RNAs which mediate various biological activities, but it is unknown whether and how Br-C is regulated by miRNAs. RESULTS: Temporal expression profiles revealed that miR-285 and Br-C basically displayed an opposite trend during larval-adult development, and Br-C was sharply up-regulated on the last day of final-instar larvae while miR-285 was significantly down-regulated. Both dual-luciferase reporter assay and miRNA-mRNA interaction assay indicated that miR-285 interacts with the coding sequence of Br-C and represses its expression. Not only overexpression but also downexpression of miR-285 led to the failure of larval to pupal to adult metamorphosis. In addition, both overexpression of miR-285 and silence of Br-C inhibited the expression of Br-C and other ecdysone signaling pathway genes, including E74, E75, ECR, FTZ-F1, and HR3. On the contrary, suppressing miR-285 obtained opposite results. Further experiments showed that 20-hydroxyecdysone down-regulated miR-285 and up-regulated Br-C and above-mentioned genes, whereas juvenile hormone alalogue (JHA) resulted in opposite effects. CONCLUSION: Our results reveal that miR-285 is involved in mediating the metamorphosis in G. daurica by targeting Br-C in the ecdysone signaling pathway. miR-285 and its target Br-C could be as a potential target for G. daurica management. © 2024 Society of Chemical Industry.

20.
ACS Appl Mater Interfaces ; 16(7): 8679-8687, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38324753

RESUMO

Heterostructure engineering and oxygen vacancy engineering are the most promising modification strategies to reinforce the Zn2+ ion storage of vanadium oxides. Herein, a rare mixed-dimensional material (VOx), composed of V2O5 (2D), V3O7 (3D), and V6O13 (3D) heterostructures, rich in oxygen vacancies, was synthesized via thermal decomposition of layered ammonium vanadate. The VOx cathode provides an exceptional discharge capacity (411 mA h g-1 at 0.1 A g-1) and superior cycling stability (the capacity retention remains close to 100% after 800 cycles at 2 A g-1) for aqueous zinc-ion batteries (AZIBs). Ex situ characterizations confirm that the byproduct Zn3V2O7(OH)2·nH2O is generated/decomposed during discharge/charge processes. Furthermore, VOx demonstrates reversible intercalation/deintercalation of H+/Zn2+ ions, enabling efficient energy storage. Remarkably, a reversible crystal-to-amorphous transformation in the V2O5 phase of VOx during charge-discharge was observed. This investigation reveals that mixed-dimensional heterostructured vanadium oxide, with abundant oxygen vacancies, serves as a highly promising electrode material for AZIBs, further advancing the comprehension of the storage mechanism within vanadium-based cathode materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...